A GENERALIZATION OF WATTS’S THEOREM:
RIGHT EXACT FUNCTORS ON MODULE CATEGORIES

A. NYMAN AND S. P. SMITH

ABSTRACT. Watts’s Theorem says that a right exact functor F' : ModR —
ModS that commutes with direct sums is isomorphic to — ® g B where B is
the R-S-bimodule FFR. The main result in this paper is the following: if A is
a cocomplete category and F': ModR — A is a right exact functor commuting
with direct sums, then F' is isomorphic to — ® g F where F is a suitable
R-module in A, i.e., a pair (F,p) consisting of an object F € A and a ring
homomorphism p : R — Homa (F, F). Part of the point is to give meaning to
the notation — ® g F. That is done in the paper by Artin and Zhang [1] on
Abstract Hilbert Schemes. The present paper is a natural extension of some
of the ideas in the first part of their paper.

1. INTRODUCTION

Let R and S be rings and let ModR and ModS denote the category of right
R-modules and right S-modules, respectively. Watts’s Theorem, which was proved
by Eilenberg [3] and Watts [7] at about the same time, is the following:

Theorem 1.1. Suppose F' : ModR — ModS is a right exact functor commuting
with direct limits. Then F = — ®pr B where B is an R-S-bimodule.

Let B(ModR, Mod.S) denote the full subcategory of the category of functors from
ModR to ModS consisting of right exact functors commuting with direct limits. The
next result is a slightly more precise version of Theorem 1.1.

Theorem 1.2. The functor ¥ : Mod(R°P ®7.5) — B(ModR, ModS) induced by the
assignment B — — Qg B is an equivalence of categories.

Theorem 1.1 is then just the fact that the functor W is essentially surjective.

The main result of this paper (Theorem 3.1) is that if ModS is replaced by an
arbitrary cocomplete! category A, then a version of Theorem 1.2 still holds. One of
the obvious hurdles in proving such a theorem is to have a sensible notion of tensor
product in this context. We use the tensor product functor that was defined in [6,
Thm. 3.7.1] and investigated in detail in [1] (see Section 2.4).

In Proposition 4.2, we specialize our main result to the case that A is the category
of quasi-coherent sheaves on a scheme Y. This version of the main result is used
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extensively in [5] to prove a structure theorem for right exact functors between
categories of quasi-coherent sheaves on schemes.

2. PRELIMINARIES

Throughout this paper, k is a fixed commutative ring, R is a k-algebra, and
v : k — R is the homomorphism giving R its k-algebra structure.

2.1. k-linearity. Let A be an additive category. We say A is k-linear if for all
objects X and Y in A, Homa(X,Y) is a k-module and composition of morphisms
is k-bilinear. Equivalently, A is k-linear if there is a ring homomorphism

¢: k — End(ida)

from £ to the ring of natural transformations from the identity functor to itself.
The first definition tells us that for each object X € A and each a € k there is a
morphism ax : X — X such that

(2-1) ayof=foax

for all @ € k and f € Homa(X,Y"). The second definition tells us there are natural
transformations c(a) : ida — ida for each a € k, and therefore associated morphisms
cla)x + X — X for each a € k and X € A. The connection between the two
definitions is that
cla)x =ax
for all @ € k and X in A.
The k-linear structure on ModR is given by

(2-2) apr(m) = m.y(a).
for all M € ModR, m € M, and a € k.

2.2. k-linear functors. Let C and A be k-linear categories. A functor F': C — A
is k-linear if the natural maps Homc(X,Y) — Homa(FX, FY') are k-linear for all
X and Y in C. Equivalently, F' is k-linear if F' is additive and

F(ay) = ary
for all @ € k and Y € ModR.
We write
Bk (C7 A)
for the full subcategory of the category of functors C — A consisting of k-linear
right exact functors that commute with direct limits. We use the letter B to remind
us of bimodules.

It is surely well known that an adjoint to a k-linear functor is again k-linear but
we provide a proof of this for completeness.

Proposition 2.1. Let C and A be k-linear categories. Let G : A — C be a functor
having a left adjoint F. If G is k-linear so is F'.

Proof. Let X € C, and let
v : Homp(FX, FX) — Homc(X,GFX)
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be the adjoint isomorphism. By the functoriality of the adjoint isomorphisms the
diagrams

Homp (FX, FX) ——~— Hom¢ (X, GFX)

“ﬂ lof

Homp (F' X, FX) ————— Homc(X,GFX)

and
Hompa (FX, FX) ——~—— Hom¢ (X, GFX)

Homa(FX, FX) ————— Homc (X, GFX)

commute for all X in C, all f € Hom¢(X, X), and all g € Homa(FX, FX).

Let 6 € Homa (FX, FX) be an element in the top left corner of the diagrams.
Let f =ax and g = apx. The commutativity therefore gives

v(@oF(ax)) =v(f)oax and
viapx 0o8) = Glarx) ov(8).
But v(0) : X - GFX is a k-linear morphism so v(#) o ax = agrx o v(6). Since G
is k-linear, G(arx) = agrx. Hence
v(0 o F(ax)) = agrx ov(0) = Glarx) ov(0) = v(arx o0).
But v is an isomorphism so
foF(ax)=arx o0.

Now take § = idpx to get F(ax) = arx, so showing that F is k-linear. O

2.3. The category Ag. For the remainder of this paper, we let A denote a k-linear
cocomplete category.

A left R-module in A is a pair (F,p) where F is an object in A and p : R —
Enda F is a k-algebra homomorphism. Popescu [6, p. 108] calls (F,p) a left R-
object of A. Let (F,p) and (G, p’) be left R-modules in A. We define the set of
R-module maps from (F, p) to (G, p") to be

Hompg(F,G) := {a € Homa(F,G) | p'(r) o = a0 p(r) for all r € R}.

Using these R-module maps as morphisms we then obtain a category Ag, the
category of left R-modules in A.

Suppose (F,p) € Ag. If G € A, then Homa(F,G) becomes a right R-module
through the composition map

Homa (F,G) x Homa(F, F) — Homa(F,G),
i.e.,
a.r:=aop(r)

for « € Homa(F,G) and r € R. This allows us to view Homa(F, —) as a functor
A — ModR.

Let py @ R — R be the right R-module homomorphism p,(r) := ar.
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Lemma 2.2. Suppose F' € Bi(ModR,A). Define the ring homomorphism
p: R — Endp FR, p(x) == F(iy).
Then (FR,p) € Ag.

Proof. To prove the lemma it suffices to show that p is a k-algebra homomorphism,
i.e., that (po~)(a) = apg for all a € k. But

p(j/(a)) = F(M’y(a)) = F(aR) = GFR,
where the second equality is due to (2-2). Hence the result. O

2.4. The functor — ®p F. Recall the standing hypothesis that A is cocomplete.

Let (F,p) € Ag. By [6, p. 108], the functor Homa (F, —) : A — ModR has a left
adjoint.> We fix a left adjoint and denote it by — ®g F. By [1, Proposition B3.1],
the functor — ® g F is unique up to isomorphism (of functors) such that

e RRpr F=F, and
e — ®p F is right exact and commutes with direct sums.

Since the functor Homa (F, —) is k-linear for all F € A, Proposition 2.1 implies
the following:

Corollary 2.3. If (F,p) € Ag, then — ®g F is k-linear.

3. THE GENERALIZATION OF WATTS’S THEOREM

Theorem 3.1. The functor

U : Ar — Bir(ModR,A)
induced by the assignment

Y(F)=—-Q®grJF,

is an equivalence of categories.
3.1. The proof that V is essentially surjective.
Proposition 3.2. 3 Let F' € By(ModR,A). Then F = — ®g F where F = FR.
Proof. Let 0y : M — Homa(F, FM) be the composition

M M Homp(R, M) — Homa(F, FM)

where Aj; is the canonical isomorphism m — A, where A, (r) := mr for all r € R.
Let

Oy MerF—FM
be the map that corresponds to 8; under the adjoint isomorphism

Hompg (M, Homa (F, FM)) 2 Homa(M ®g F,FM).

21t is essential that A be cocomplete for — ®pr F to exist. For example, if R = Z and A
consists of finitely generated abelian groups and F = Z, there is no adjoint. But the hypothesis
of cocompleteness is absent from [6, p.108] and parts of [1].

3 After we finished writing this paper we learned that a version of this result had already been
proved by Brzezinski and Wisbauer [2, 39.3, p.410] under the hypothesis that the objects of A are
abelian groups.
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We will show that the © s define a natural transformation, i.e., if f: M — N
is a homomorphism of right R-modules, then the diagram

(3-1) MeorFLl2 Nor F

ol e

FMF—f>FN

commutes. Define 1 : Homa (F, FM) — Homa (F, FN) by n(g) := Ffog. The left
and right squares in the diagram

M M, Homp(R, M) — Homa(F, FM)

| |

N—— Homp(R, N) — Homa (F, FN)
N

commute, so nofy =0x o f.
We now consider the diagram

Hom(M, Hom(F, FM)) ———— Hom(M ® F, FM)

J |

Hom(M,Hom(F, FN)) ———— Hom(M ® F, FN)

| T

Hom(N, Hom(F, FN)) ————— Hom(N ® F, FN),

whose verticals are induced by f and whose horizontals are the adjoint isomorphism.
The top and bottom rectangles of this diagram commute by the functoriality of the
adjoint isomorphisms. The maps #); and 0y belong to the top and bottom Hom-
sets of the left-hand column and their images in Hom(M, Hom(F, FN)) are the
same because n o 6y = Oy o f. It follows that the images of ©; and Oy in
Hom(M ® F, FN) are the same. In other words,

FfO@NIZQNO(f®F)

which proves that (3-1) commutes and hence that the © /s define a natural trans-
formation
©:—QrF —F.

Because (F o Ag)(z) = F(us,) = p(x), 0r : R — Homa(F, F) is the map giving
F its R-module structure, so the corresponding map Or : R ®gr F — F is an
isomorphism. Since the functors — @z F and F' commute with direct sums, O, is
an isomorphism for all free R-modules M. Since — ®pr F and F' are right exact it
follows that ©j; is an isomorphism whenever M is the cokernel of a map between
free R-modules. But every R-module is of that form so ©); is an isomorphism for
all M. Hence © is an isomorphism of functors.* ([

Proposition 3.2 says that the functor ¥ in Theorem 3.1 is essentially surjective.

4The argument in the last part of the proof is a result of B. Mitchell. See [2, 39.1, p.409] for
more details.
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3.2. The proof that ¥ is fully faithful. Let (F,p) € Ag and let N/ € A. The
composition

(3-2)  Homa(R®g F,N) —= Hompg(R, Homa(F,N')) = Homa(F,N),

where the first map is the adjoint isomorphism and the second is the canonical
isomorphism v +— (1), induces an isomorphism of functors Homa(R @r F,—) —
Homa (F, —) which, by the Yoneda Lemma, corresponds to a unique isomorphism
9]: o F 4N) R ®Rr F.
The next result is a slightly sharper form of [1, Prop. B3.1(a)].

Proposition 3.3. The diagram

(3-3) RorF % Rong

F——g

commutes for all F,G € Ag and all ¢ € Homg(F,G). Therefore, the maps 0F
provide an isomorphism

0:ida, — (R®g —)
of functors.

Proof. By the Yoneda lemma, the commutivity of (3-3) is equivalent to the con-
dition that for all N € A the outer rectangle in the diagram

(3-4) Homa(R @5 F,N) %Y Homa(Ror G,N)
Hom (R, Homa (F, N')) ¢—————— Hompg(R, Homa(G, \))
Homa (F,N) —, Homa (G, N)

commutes, where the vertical arrows are the factorizations in (3-2) that are used
to define 0 and g, and

L()(z) :==(z) o
for all z € R and ¢ € Hompg(R, Homa (G, N)).

The uppermost square of (3-4) commutes by functoriality of the adjoint isomor-
phism. Going clockwise around the lower square, the image in Homa(F,N) of
1 € Hompg (R, Homa (G, N)) is (1) o ¢. Going counter-clockwise around the lower
square, the image of ¥ in Homa(F,N) is I'(¢))(1) = (1) o ¢. Hence the lower
square commutes.

It follows that the outer rectangle commutes. ([

Lemma 3.4. Let C be a cocomplete abelian category and let F,G : ModR — C be
right exact functors that commute with direct sums. Let 7,7 : F — G be natural
transformations. If Tr = T, then 7 = 1’.
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Proof. Let M;, i € I, be a collection of right R-modules. Then there is a natural

o Pry; - F(@ Mi)

iel i€l
and the fact that F commutes with direct sums says that this map is an isomor-
phism. By the universal property of colimits, there is a commutative diagram

®iel FM; >F(®iel Mi)

ST, l J,TGB M;

Drcs GM; —— G (e, M)
Since the horizontal maps are isomorphisms, if 757, = 7, for all 4, then

_ !
TeM; = ToM; -

In particular, it follows that 7p = 75 for all free R-modules P.
Let M be a right R-module and let P — @ — M — 0 be an exact sequence in
which P and @ are free R-modules. Then there is a commutative diagram

FP FQ FM 0
TPJ/ TQ\L
GP GQ GM 0,

and a unique map FFM — GM making the diagram commute, namely 75,. Since
Tp = Tp and 17 = Té?, it follows that 7y = 73,. O

Now we prove that ¥ is fully faithful. Let F and G be objects in Ar and let
¢ € Hompg(F,G). By Proposition 3.3, the diagram

(3-5) RopF—2 L R®RG
QJ:T Teg
F - g

commutes. It follows from this that R ® ¢ is non-zero if ¢ is non-zero. Hence ¥ is
faithful.

To complete the proof of Theorem 3.1, it remains to show that ¥ is full. To that
end, let

T:—Q®rF > —Qrg

be a natural transformation. We must show there is a homomorphism ¢ € Homp(F, G)
such that 7py = M ® ¢ for all M € ModR.

Define

¢::0§10TR00}‘.

It follows from the commutativity of (3-5) that R ® ¢ = 7. By Lemma 3.4, it
follows that M ® ¢ = ) for all M € ModR. In other words, U(¢) = 7.
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4. AN APPLICATION

Throughout this section, let X denote a k-scheme. If X = Spec R, we let

(=) : ModR — QcohX
be the quasi-inverse to the global sections functor defined in [4, II, Definition, p.
110).

Example 4.1. Let f : Y — X be a morphism from an arbitrary scheme to an

affine scheme X = Spec R. Then f*o (A—/) : ModR — QcohY is a right exact functor

~

commuting with direct sums. Proposition 3.2 says that f*o(—) 2 — ®g Oy where
Oy is made into an R-module via the ring homomorphism

R — HOII’IR(R, R) — Homy(f*OX, f*Ox) — Homy(Oy, Oy)

where the first map sends r € R to multiplication by r, the second map is induced
by f* o (—) and the third isomorphism is induced by the natural isomorphism

ffOx = Oy.

The motivation for this paper lies in the paper [5], in which k-schemes X and YV
and k-linear functors F': QcohX — QcohY that are right exact and commute with
direct sums are considered. One source of such functors is the following. Let F be
a quasi-coherent sheaf on X X Y, and define
(4_1) —Qox F = pr2*(pri(7) ®OX><}CY ‘F)
where pr; : X xx Y — XY, i = 1,2, are the obvious projections. A functor of the
form — ®p, F is not always an object of By(QcohX, QcohY’). This happens, for
example, if Y = Speck, X =P} and F = — ®0, Oxxy 2 T'(X,—).

On the other hand, an object of B (QcohX, QcohY') is not always isomorphic to
one of the form — ®o, F. This happens, for example, if Y = Speck, X =P} and
F = HY(X,-) [5, Proposition 5.4].

The question motivating [5] is whether F' is isomorphic to a functor of the form
— ®oy F. It follows from Theorem 3.1 that this is always the case if X is affine,
as we now show.

Proposition 4.2. Let R be a k-algebra and Y a k-scheme. Write X := Spec R.
Then the inclusion functor

Qcoh(X x Y) — Bi(QcohX, QcohY), F = —Qoy F,
is an equivalence of categories.
Proof. By [4, II, exercise 5.17e], the functor
pra, : Qeoh(X X Y) — Qcoh(pry, Oxx,v)

is an equivalence, where Qcoh(pry, Ox .,y ) denotes the category of quasi-coherent
Oy-modules with pry, Ox «,y-module structure. Furthermore, it is straightforward
to check that the functor

Qcoh(pry, Oxx,v) = (QcohY)r

induced by the assignment £ — (&,p), where p : R — Homy (€,€) is defined
through the pry, Oxx,y-structure of £, is an equivalence. By Theorem 3.1, the
functor

(QcohY)r — Bi(ModR, QcohY')
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induced by the assignment (€, p) — —®gE& is an equivalence. Therefore, the functor
Qcoh(X x1 Y) — Bi(ModR, QcohY')

induced by the assignment F — — ®p pr,, F is an equivalence. By the uniqueness
properties of the functor — ® g £ described in Section 2.4, we have an isomorphism
of functors

—@rPry, F ————— (-) ®oy F
in Bx(R, QcohY"). It follows that the functor
Qcoh(X x1 Y) — Bi(ModR, QcohY')

induced by the assignment F — (—) ®o, F is an equivalence. The claim follows
easily from this. O
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