GRASSMANNIANS OF TWO-SIDED VECTOR SPACES

ADAM NYMAN

ABSTRACT. Let k C K be an extension of fields, and let A C My (K) be
a k-algebra. We study parameter spaces of m-dimensional subspaces of K"
which are invariant under A. The space F 4(m,n), whose R-rational points
are A-invariant, free rank m summands of R", is well known. We construct a
distinct parameter space, G 4(m, n), which is a fiber product of a Grassman-
nian and the projectivization of a vector space. We then study the intersection
F 4 (m,n) NG 4(m,n), which we denote by H 4(m,n). Under suitable hypothe-
ses on A, we construct affine open subschemes of F 4 (m, n) and H 4 (m, n) which
cover their K-rational points. We conclude by using F 4 (m,n), G 4(m,n), and
Ha(m,n) to construct parameter spaces of two-sided subspaces of two-sided
vector spaces.
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1. INTRODUCTION

Throughout this paper, k C K is an extension of fields. By a two-sided vector
space we mean a k-central K — K-bimodule V which is finite-dimensional as a
left K-module. Thus, a two-sided vector space on which K acts centrally is just a
finite-dimensional vector space over K. The purpose of this paper is to continue the
classification of two-sided vector spaces begun in [4] by constructing and studying
parameter spaces of two-sided subspaces of V.
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Instead of focusing exclusively on parameter spaces of two-sided subspaces of V,
we take a more general perspective. Let A C M,,(K) be a k-algebra, and let R be
a K-algebra. The functor F4(m,n) : K — alg — Sets defined on objects by

Fa(m,n)(R) = {free rank m direct summands of R™ which are A-invariant}

and on morphisms by pullback is representable by a subscheme, F(m,n), of
the Grassmannian of m-dimensional subspaces of K™, G(m,n) [3]. The scheme
F 4(m,n) is related to two-sided vector spaces as follows. Suppose ¢ : K — M, (K)
is a k-central ring homomorphism and K™ is made into a two-sided vector space,
Ky, viav-x = ve(z). Then the K-rational points of the scheme Fiy, 4(m,n)
parameterize the two-sided m-dimensional subspaces of K o

There are other subschemes of G(m,n) which parameterize two-sided vector
spaces as well. In this paper, we study the geometry of F4(m,n) and two other
subschemes of G(m,n), Ga(m,n) and H4(m,n), which have the same K-rational
points as F4(m,n). Our justification for studying G 4(m,n) is that we are able to
give a global description of it as an intersection of G(m,n) and the projectivization
of a vector space (Theorem 3.3). Our justification for studying H 4 (m, n) is that it is
a subscheme of G 4(m, n) which has a smooth, reduced, irreducible open subscheme
which covers its K-rational points (Theorem 4.9).

We now describe G 4(m,n) by its functor of points, G4(m,n). The R-rational
points of this functor are the free rank m summands of R™, M, which have the
property that the image of A" M under the composition

A"R* S N"(Rox K™) 5 Rog N"K"
has an R-module generator of the form
Zm@liﬂ/\"'/\’uim

?

where Span i {v;1, ..., Vim} is A-invariant for all i (see Definition 2.3). The motiva-
tion behind this definition is that when A—{0} C GL,(K) and K™ is homogeneous
as a K ®; A-module (see Section 2 for a description of the action of K ®; A on
K™), G(m,n) solves the same parameterization problem that F4(m,n) does, in
the sense that Ga(m,n)(K) = Fa(m,n)(K). Although it is not clear from the
definitions, the functors G 4(m,n) and Fa(m,n) are distinct (Example 6.7).

We prove in Section 3 that G 4(m,n) has a simple global description (Theorem
3.3):

Theorem. Let
N4 = Spang{viA- - -Avp|v1, ..., v is a basis for an A-invariant subspace of K™}.
The functor G g4(m,n) is represented by the pullback of the diagram
Pr((AX)")
G(m,n)—Pr (A" K™)")

whose horizontal is the canonical embedding, and whose vertical is induced by the
inclusion \'y — N K™
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To the authors knowledge, there is no similar description of F 4(m,n). The func-
torial description of G 4(m,n) allows us to describe the tangent space to G 4(m,n)
(Theorem 3.6).

We define H 4 (m,n) to be the pullback of the diagram

Ga(m,n)

l

Fa(m,n)— G(m,n).

Suppose S C K" is a simple K ®j A-module such that dimg S = m, and K" is
S-homogeneous and semisimple as a K ®j A-module. In Section 4, we construct
an affine open cover of the K-rational points of F4(m, n). Furthermore, when K is
infinite and A is commutative, we construct an affine open cover of the K-rational
points of H4(m,n). As a consequence, we prove the following (Theorem 4.9):

~

Theorem. Suppose K" = S as K ®) A-modules. Then F4(m,n) contains an
open subscheme which is smooth, reduced, irreducible, of dimension lm —m and
has the same K-rational points as F s(m,n). Furthermore, if K is infinite and A is
commutative, then Ha(m,n) contains an open subscheme which is smooth, reduced,
irreducible, of dimension lm —m and has the same K -rational points as Hy(m,n).

Now, let V = Kg and let W be a two-sided vector space. In Section 6, we use
Fa(m,n), Ga(m,n), and H(m,n) to construct three parameter spaces of two-sided
subspaces of V of rank [W] (see Section 5 for the definition of rank). We denote these
parameter spaces by Fy([W], V), G4 ([W],V), and Hg([W], V). We then provide
examples to show that, although Fy,([W], V), G4([W], V), and Hy([W], V') have the
same K-rational points, Fy([W], V) # G4([W],V) and Fy([W],V) # Hg([W],V)
for certain [W] and V. As a consequence, F4(m,n) # Ga(m,n) and F4(m,n) #
H (m,n) for certain A, m, and n.

We then show that, if F' is an extension field of K, then every element of
Gy([S], V)(F) and of Hy([S],V)(F) is isomorphic to F @k S as F ®; K-modules
(Theorem 6.10).

We conclude by studying the geometry of the parameter spaces Fy([W], V),
Gy([W],V), and Hy([W],V) in two cases. In case K/k is finite and Galois, we
prove that the three spaces are equal to each other, and equal to the product of
Grassmannians (Corollary 6.12). In case K is infinite, {S;}]_; consists of noniso-
morphic simples with dim.S; = m;, and V is semisimple with I; factors of S;, we
prove the following (Corollary 6.15):

Theorem. Fy([S1] + -+ [S:], V) and Hy([S1] + -+ + [Sr], V) contain smooth,
reduced, irreducible open subschemes of dimension 21:1 lim; — m; which cover
their K-rational points.

Aside from their significance as generalizations of Grassmannians, parameter
spaces of two-sided subspaces of V', or Grassmannians of two-sided subspaces of V,
are related to classification questions in noncommutative algebraic geometry. The
subject of noncommutative algebraic geometry is concerned, among other things,
with classifying noncommutative projective surfaces (see [7] for an introduction to
this subject). One important class of noncommutative surfaces, the class of non-
commutative ruled surfaces, is constructed from noncommutative vector bundles.
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Let U and X be schemes, and let X be a U-scheme. By a “U-central noncommuta-
tive vector bundle over X”, we mean an Oy -central, coherent sheaf X — X-bimodule
which is locally free on the right and left [8, Definition 2.3, p. 440].

Two-sided vector spaces are related to noncommutative vector bundles as follows.
If £ is a noncommutative vector bundle over an integral scheme X, &, is a two-sided
vector space over k(X). In addition, if U = Speck and X = Spec K, a U-central
noncommutative vector bundle over X is just a two-sided vector space.

Let £ be a (commutative) vector bundle over X. An important problem in alge-
braic geometry is to parameterize quotients of £ with fixed Hilbert polynomial, and
study the resulting parameter space. We are interested in the analogous problem
in noncommutative algebraic geometry: to parameterize U-central quotients of a
U-central noncommutative vector bundle over X with fixed invariants, and study
the resulting parameter space. Thus, the results in this paper address this problem
when U = Speck and X = Spec K.

Notation and conventions: We let Sets denote the category of sets and K — alg
denote the category of commutative K-algebras. For any scheme Y over Spec K,
we let hy denote the functor of points of Y, i.e. the functor hy from the category
K —alg to the category Sets is the functor Homgpec x (Spec —,Y). Unless otherwise
specified, all unlabeled isomorphisms are assumed to be canonical. Finally, we
suppose throughout that A C M, (K) is a k-algebra and R is a commutative K-
algebra.

Other notation and conventions will be introduced locally.

Acknowledgments: 1T thank W. Adams, B. Huisgen-Zimmermann, C. Pappacena
and N. Vonessen for helpful conversations, I thank A. Magidin for proving Lemma
6.5, and I thank S.P. Smith for a number of helpful comments regarding an earlier
draft of this paper.

2. SUBFUNCTORS OF THE GRASSMANNIAN

Recall that the functor of points of the Grassmannian over Spec K is the functor
G(m,n) : K — alg — Sets defined on R as the set of free rank m summands of R",
and defined on morphisms as the pullback [2, Exercise VI-18, p. 261].

In this section, we define three subfunctors of G(m,n), Fa(m,n), Ga(m,n), and
Ha(m,n). We will see that F4(m,n) and H4(m,n) parameterize m-dimensional
subspaces of K™ which are invariant under the action of A, and G 4(m,n) does so
under suitable hypotheses on A.

Let m = Z?Zl rie; € R™, where e; is the standard unit vector. We note that the
actionr®a-m = Z?Zl rrie;a makes R™ an R ®j A-module. We say that M C R"
is A-invariant if M is an R ®;, A-submodule.

Definition 2.1. Suppose m is a nonnegative integer. Let Fy(m,n)(—) : K —alg —
Sets denote the assignment defined on the object R as

{M € G(m,n)(R)|M is A-invariant}

and on morphisms ¢ : R — T as the pullback. That is, F4(m,n)(0)(M) equals the
image of the map

(1) TorM —T®pR" = T"
whose left arrow is induced by inclusion M C R™.

The proof of the following result is straightforward, so we omit it.



GRASSMANNIANS OF TWO-SIDED VECTOR SPACES

ot

Lemma 2.2. The assignment Fs(m,n) : K — alg — Sets is a functor.

We call elements of Fa(m,n)(R) free rank m A-invariant families over Spec R,
or free A-invariant families when m, n and R are understood.

Definition 2.3. Let M C R™ be a free rank m summand. We say M is generated
by A-invariants over Spec R or is generated by A-invariants if R is understood, if
A" M maps, under the composition

(2) A" M — \"R" = \"(R@x K") = Rox \" K"
whose left arrow is induced by inclusion, to an R-module with generator of the form

(3) Zﬁ@)vil/\“'/\vim,

where, for all i, {v;1,...,vum} is a basis for a rank m A-invariant subspace of K™.
For a discussion of the motivation behind this definition, see Remark 2.9.

Lemma 2.4. Let § : R — T be a homomorphism of K-algebras, and let M be a
free rank m summand of R™ which is generated by A-invariants over Spec R. Then
the image of T ® g M under (1) is a free rank m summand of T™ which is generated
by A-invariants over SpecT.

Proof. Suppose M has basis wy, ..., w, € R", and w; A --- A w,, maps to
ZT@@Uﬂ/\"'/\’UZ‘m
i
under (2). Then 1®@wy,...,1Q@w,, € T®gr M are generators of T ®r M, and, if we
let Wy, . .., W, denote the images of 1 ® wy, ..., 1® w,, under (1), then Wy, ..., W,

generates the image of T ®@ g M under (1). We claim wy A - - - AW, € A" T™ maps
to > 6(r;) ® vi1 A+ -+ A vy, under the composition
i

(4) AT S NY(T o K*) S Tog N™ K"
To prove the claim, we first note that a straightforward computation implies that

A™(T ©r R")> A" T S N Tox K" STox N"K"

o -
TOAN"R" ST or N"(Rog KM ST @r (Rox N" KM)ST @ N™ K™

commutes (recall our convention about unlabeled isomorphisms). Furthermore, the
image of 1@ wy A+ Aw,y, € T ®g A™ R" under the right-hand route of (5) equals
S78(r;) ® vt A -+ Avip. Therefore, the image of 1@ wy A+ Aw,, €T Qr A" R™

under the left-hand route of (5) equals > 0(r;) ® v;1 A -+ A vjp,. Finally, the image

of 1®wy A+ Awy, € T@r A" R™ under the first two maps of the left-hand route
of (5) equals Wy A -+ Aw,, € \"T". The claim, and hence the lemma, follows
from the fact that the composition of the third and fourth arrows of the left-hand
route of (5) is the composition (4). O
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Definition 2.5. Let G4(m,n)(—) : K — alg — Sets denote the assignment defined
on the object R as

{M € G(m,n)(R)|M is generated by A-invariants}
and on morphisms as the pullback.
The next result follows immediately from Lemma 2.4.
Lemma 2.6. G4(m,n): K — alg — Sets is a functor.

We call elements of G 4(m,n)(R) free rank m families generated by A-invariants
over Spec R, or free families generated by A-invariants when m, n and R are un-
derstood.

Remark 2.7. Tt follows immediately from Definition 2.3 that
Fa(m,n)(K) C Ga(m,n)(K).
We now find sufficient conditions under which F4(m,n)(K) = Ga(m,n)(K).

Lemma 2.8. Let M be a free rank m family generated by A-invariants over Spec R.
If My, is A-invariant for every mazximal ideal m of R, then M is A-invariant. If R
is a field, A— {0} C GL,(K), and K™ is homogeneous as a K ®; A-module, then
M is A-invariant.

Proof. Suppose m is a maximal ideal of R, a is an element of A, and N = Ma+ M.
The diagram

Ry ®g M—Ry ®r R"SR™

! -

Rn®r N—Ry @g R*SRY,

whose left horizontals and left vertical are induced by inclusion, commutes, and
the left horizontals are injective since localization is exact. By Lemma 2.4, the
image, M, of the top horizontal composition is generated by A-invariants. Thus,
by hypothesis, M is A-invariant. Hence, the left vertical is surjective, and so the
map

My — Nn
induced by inclusion is an epimorphism. It follows from [1, Corollary 2.9, p. 68]
that M = N, and hence that M is A-invariant.

Next, suppose R is a field, A— {0} C GL,(K), K™ is homogeneous as a K ®j, A-
module, and M has basis w1, ..., w,, € R™. If M were not A-invariant, then there
would exist an 1 < i < m and an a € A such that w;a is not an element of M. Thus,
since a is invertible, wia A - - - A wy,a would not be proportional to wy A -+ A w.y,.

On the other hand, since K™ is homogeneous, the determinant of the matrix
corresponding to a € A acting on an m-dimensional, A-invariant, subspace V is
independent of V. Thus, since M is generated by A-invariants, wia A -+ A w,a =
cwy A - -+ A w,, for some nonzero c € K. We conclude that M is A-invariant. O

Remark 2.9. As a consequence of Lemma 2.8, if A — {0} C GL,(K), and K" is
homogeneous as a K ®; A-module,

Ga(m,n)(K) = Fa(m,n)(K).
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Thus, these two functors parameterize the same object. On the other hand, we
will see in Theorem 3.3 that the scheme representing G 4(m,n) has a simple global
description as a pullback of G(m,n) and the projectivization of a vector space.
These two facts provide motivation for Definition 2.3.

Definition 2.10. Let H4(m,n)(—) : K —alg — Sets denote the fibered product of
functors F4(m, n) X G(m,n) G a(m,n) induced by inclusion of F4(m,n) and G 4(m,n)
in G(m,n) [2, Definition VI-4, p. 254].

We call elements of H(m,n)(R) free rank m A-invariant families generated by
A-invariants over Spec R, or free A-invariant families generated by A-invariants
when m, n, and R are understood.

Remark 2.11. Tt follows from Remark 2.7 that Ha(m,n)(K) = Fa(m,n)(K).

3. REPRESENTABILITY OF G4(m,n) AND Ha(m,n)

It was proven in [3] that Fi4(m,n) is representable by a subscheme of the Grass-
mannian G(m,n). The main result of this section is that G 4(m,n) is representable
by the intersection of G(m,n) and the projectivization of a vector space. It will
follow easily that Ha(m,n) is representable as well. We conclude the section by
computing the tangent space to G(m,n).

Let P(—) denote the projectivization functor. That is, if M is a K-module,
we let P(M) denote the scheme whose R-rational points equal equivalence classes
of epimorphisms 7 : R ®x M — L, where L is an invertible R-module, such that
71 : R M — L is equivalent to 7o : RQx M — Lo iff there exists an isomorphism
1 : L1 — Lo such that 5 = ¥ry.

Before proving that G 4(m,n) is representable, we recall two preliminary facts.

Lemma 3.1. Let U be a subspace of \" K™. There is a natural isomorphism
Rok (U)* — (Rog U),
and the canonical isomorphism N\ R" — R®x N K™ induces an isomorphism
(Rex A"K™)" = (\"R")".
We omit the straightforward proof of the next result.

Lemma 3.2. Let F denote the full subcategory of the category of R-modules con-
sisting of finitely generated free R-modules. Then the functor

Homp(—,R):F—F
is full and faithful.
We let
A% = Spang{vi A+ Avp|v1,..., vy is a basis for an A-invariant subspace of V'}.

Theorem 3.3. The functor G 4(m,n) is represented by the pullback of the diagram
P((AA)*)
(6) |
G(m,n)—P((A" K™)")

whose horizontal is the canonical embedding, and whose vertical is induced by the
inclusion \'y — N K™
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Proof. By [2, p. 260], it suffices to prove that the functor G 4(m,n) is the pullback
of functors

(7) hG(m,n) Xhepm xcnyey PE(AT)®)

induced by (6).

Let M C R™ be a free rank m summand. We recall a preliminary fact. The
map A" M — A" R™ induced by the inclusion of M in R" identifies A" M with
a summand of A" R™. Thus, the induced map

v (N"RY) — (A" M)
is an epimorphism.
We now prove that G4(m,n) equals (7). We note that a free rank m summand
M C R™ is an R-rational point of (7) iff the epimorphism

moon\kx = mpnyk ¥ m *
(8) Reg (N"K")" — (AN"R")" — (A" M)
whose left arrow is the map from Lemma 3.1, factors through the map
(9) Rex (N"K")" — Rex (N})"

induced by the inclusion A’y € A™K™. Thus, to prove the result, it suffices to
show that (8) factors through (9) iff M is generated by A-invariants. Now, (8)
factors through (9) iff there exists a map v* : (R ®@x A'})* — (A" M)* making
the diagram

o o

Reog (N"K")*—(Ror N"K")*—(AN"R")*

w0 l J I

Rok (N3 — (Rox AY)* ——(A"M)*
whose left and middle vertical are induced by inclusion, and whose top horizontals
and bottom left horizontal are from Lemma 3.1, commute. By Lemma 3.1, the left
square of (10) commutes. Thus, by Lemma 3.2, there exists a map 7* making (10)
commute iff there exists a map v: A\""M — R @k A'{ making the diagram

Rox N"Kne=—N\"R"

(11) T T

Rox Ny < N\"M
whose verticals are inclusions, commute. This occurs iff M is generated by A-
invariants, i.e. iff M € Ga(m,n)(R). O

We denote the pullback of (6) by G4(m,n). The following result is now imme-
diate:

Corollary 3.4. G4(m,n) is a projective subscheme of G(m,n).
We also note that H4(m,n) is representable:

Corollary 3.5. Ha(m,n) is represented by the pullback of the diagram
GA(m7 ’fl)

l

Fa(m,n)— G(m,n).
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whose arrows are induced by the inclusion of functors G a(m,n) C G(m,n) and
Fa(m,n) C G(m,n).

Proof. Since H4(m,n) is defined as the fibered product Fa(m, n) X g(m,n) Ga(m,n)
induced by the inclusion of functors G 4(m,n) C G(m,n) and F4(m,n) C G(m,n),
the result follows immediately from [2, p. 260]. O

We end the section by computing the Zariski tangent space to G 4(m,n) at the
K-rational point F = Spang{ei,...,enm}t € Ga(m,n)(K). Recall that if
U2 Ga(m,n)(K[e/(€%)) — Gal(m,n)(K)

is the map induced by the quotient Kle]/(€?) — K sending e to 0, the Zariski
tangent space to G4(m,n) at the K-rational point E € G4(m,n)(K) is the set

Tp = {M € Ga(m,n)(K[d/(e))|¥(M) = E}
with vector space structure defined as follows: Suppose {f;}™, and {g;}!", are
subsets of K™. If M € Tg, has basis {e; + ef;},, M’ € Tg has basis {e; + €g; }!"{,
and a,b € K, we let aM +bM’ € Ty denote the family with basis {e; +¢e(af; +bg:)}.
It is straightforward to check that the vector space structure is independent of

choices made.
We define a map

d: Homg (E,K") — Homg (A" E,\" K")

as follows. For ¢ € Homg (E, K™), we define d(¢) on totally decomposable wedges
as

d(l/))(el/\~-~/\em)2261/\~-~/\ei_1/\w(ei)/\ei+1/\-~-/\em
=1

and extend linearly. It is straightforward to check that d is K-linear.

Theorem 3.6. Suppose V.= E & L as a K-module for some K-submodule L of
K™. The tangent space to Ga(m,n) at E € Ga(m,n)(K) is isomorphic to

Sk ={y € Homg (E, L)|imd(y) C A'}}.

Proof. We define a map

P . TE — SE
as follows: let M € Tg have basis {e; + €(s; +t;)}2; where {e1,..., ey} is a basis
for E, s; € E, and t; € L. Define v € Homg (F,K™) by ¥(e;) = t;. We let
®(M) = 1, and we omit the straightforward proof of the fact that the definition of
® is independent of choices made.

Step 1: We prove ® is a well defined map of vector spaces. We omit the straight-
forward proof of the fact that as a map to Homg (F, K™), ® is K-linear. It remains
to show that ®(M) € Sg, i.e. that imd(¢) C A'f. Since M is generated by A-
invariants, (e; + €(s1 +t1)) A+ A (em + €(Sm + tm)) € A" M maps, under (2)
to

(12) D ori@ui A A,
where r; € K[e]/(€)? and v;, A+ Awv;,, € A'y. Thus,

(51+t1)/\62/\~~/\em+~~+el/\~~/\em_1/\(sm+tm):Zajwjl/\~~/\wjm,
J
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where a; € K and wj, A--- Awj,, € A\'f. This implies
(13)
SiNea N+ Neg+--F+er A Aepm_1 ASpF+tiNea A Nep+- - - +er A - Aep—1 ANy,

isin A'y. Since s; € E, each of the first m terms of (13) is either 0 or a multiple of
e1 A+ A e, which is in A’} Thus,

tiAes A ANepm+ - +er Ao Aepmo1 At € Ny,

ie. d(y)(er A Aew) € Ny as desired.

Step 2: We prove ® is one-to-one and onto. If ®(M) = 0 then M has a basis
{e;}1*, and thus M is the identity element of T. This establishes the fact that ®
is one-to-one.

Let ¢ € Sg, and let M € Tg have basis {e; + eip(e;)}7,. To prove @ is onto, we
must prove that M is generated by A-invariants. By hypothesis,

Gler) Nea AvesAem + - ter A Aemoy Ablem) =D bjuj, A Ay,
j

where b; € K and uj, A---Awuj, € A, and thus the image of (e1 +e(er)) A+ A
(em + €(en)) maps, under (2), to

ZTiUil N Nvg,
i
where r; € Kle]/(€)? and v;, A+ Av;,, € N'y. Hence, M € Ty, as desired. O

4. AFFINE OPEN SUBSCHEMES OF F 4(m,n) AND Hy(m,n)

Suppose S C K" is a simple K ®j A-module such that dimg S = m. In this
section, we assume K" is S-homogeneous and semisimple as a K ®j A-module. We
study the subspace A’Y € A" K™ in order to find conditions under which a free
rank m A-invariant family is generated by A-invariants. We use our results in order
to construct affine open subschemes of F4(m,n) and H,4(m,n) which cover their
K-rational points.

We suppose K™ = S and we let m; : R'™ — R™ denote projection onto the
(i — 1)m + 1 through the imth coordinates.

Lemma 4.1. Suppose M C R'™ is A-invariant. If M is principally generated as
an R ®y A-module by f, and if m;(f) € K™ for some 1 <1i <1, then M is a free
rank m summand of R™, and M is generated, as an R-module, by fai,..., fam
for some ay, ..., a, € A.

Proof. Suppose m;(f) = v € K™. Since K™ is S-homogeneous, S is simple, and
dimg S = m, there exist aq,...,a, € A such that

{vay,...,vam}

is independent over K. Thus, the R-module generated by fai,..., fa,, which we
denote by (fai,...,fam), is a free rank m summand of R'™. To complete the
proof of the lemma, it suffices to prove that (fas,..., fa,) is A-invariant. To this
end, we first prove ;| is injective. Suppose m;(xf) = 0 for © € R ®; A. Since
K" = S m(xf) = zm;(f). Thus, 2v = 0 in R®f S, so that x € ann R @ S.
Thus € ann R ®x V, again since K™ = S%!, so that «f = 0.
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Now, suppose a € A. We prove fa € (fay,..., fan). For,
mi(fa) = m(f)a
= wa
= bvay + -+ bpva,
= 7(bifar + by fam),
where by,...,b, € K. Since m;|ps is injective, we must have fa = by fay +--- +

b fam, and the assertion follows. O

For the remainder of Section 4, we suppose w; € S has one nonzero projection,

v; € S, and aq,...,a,, € A are such that
{via1,...,viam}
is independent (such aq, ..., a,, exist since S is simple).
Lemma 4.2. Suppose A is commutative, by,...,b. € K, and consider the set
(14) {biwray + -+ bywray, ... ,bywiam + - - + bpwran }.

If (14) is nonzero, then (14) is a basis for an A-invariant subspace of K™ of rank
m.

Proof. We first note that, if w € S and v # 0, then {uay,...,ua,,} is indepen-
dent iff {v1a1,...,v1a,} is independent. For, since S is a simple K ®j; A-module,
there exists an r € K ®; A such that ru = v;. Thus, since K ®; A is commuta-
tive, any dependence relation among uasy, . .., ua., is a dependence relation among
v1a1,. .., V14, and conversely. Since we have assumed above that {via,...,v1a:,}
is independent, we may conclude that if w € S is nonzero then {uas,...,ua,,} is
independent.

Suppose (14) is nonzero. The fact that the set (14) is independent follows from
the fact that some projection of (14) to a summand S of K™ = S®! is independent
by the argument in the first paragraph. To prove that the K-module generated by
(14) is A-invariant, we note that the K-module generated by (14) is contained in
the K ®; A-module, M, generated by bjw; + - -- + b,w,. On the other hand, by
Lemma 4.1, M is a free rank m summand of K™. Since the K-module generated
by (14) is a free rank m summand of K™, it must equal M. O

Proposition 4.3. Let

I'={n=(ny,---,n;) € Z5|n1+ - +n, =m},
let {ny-1,...,n, -7} denote the multiset with n; copies of i, and let
Wnp = Z W, a1 A AW, Q.

{(s1,msm) {5}, ={n1 1oy} }

If K is infinite, then wy is an element of N’y for allm € I.

Proof. If r =1, then wy, = wiag A -+ A wiay,, and the result follows from Lemma
4.2.

Now suppose r > 2, so that |I| = D = ("™"~!) > 2. We begin the proof of the
case r > 2 with two preliminary observations. First, each choice of [(c1,...,¢.)] €
IPTK_l corresponds, via the mth Veronese map v,,, to a point in ]P’Q_l. Since K is
infinite, no D — 2 plane of ]P’Q_l contains the image of vy,.
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If be K" with b= (by,...,b,), we let b = bJ* --- b’ Our second preliminary
observation is that, for each iz < D, there exist by,...,b;, € K" with b; =
(bi1, ..., bir), such that {(bP)ner};>, C KP is independent. We prove this by
induction on ig > 1. The case ig = 1 is trivial. Now suppose the result holds for
1 <y, where ig < D. Then there exist by,...,b;, C K" such that {(b?)nel}?:l -
KP is independent. Thus, since vy, ([b;]) = [(b®)ner], the subspace of P2 ! spanned
by vm([b1]), - -, Um([bi,]) is an ig — 1-plane. Since iy < D, the argument of the first
paragraph implies there exists a b;,+1 C K" such that v, ([b;,+1]) is not contained
in the ig — 1-plane spanned by v, ([b1]), ..., Um([bs,]). Thus, {(b‘{‘)ng};gl Cc KP
is independent, as desired. We conclude that there exist by,...,bp € K", such
that {(b?)nel}il C KP is independent.

‘We now prove the proposition. For all 1 < i < D, the vector

(15) (bﬂwlal R bi7-’LUT»CL1) VARERIAN (bﬂwlam + -+ bi,.wram)

is A-invariant by Lemma 4.2. Thus, by Remark 2.7, (15) is an element of A"y’ In ad-
dition, (15) equals > bPwy. Thus, it suffices to prove that wy, € Span{ Y b%w, }2
nel nel
for all n € I. To prove this, we note that since {(b?)nej}i[)zl C KP is independent,
{3 bPwy}2 | is a set of D independent vectors in Span{wy|n € I'}. Since |I| = D,
nel
{3 02wy 2, forms a basis for Span{wy|n € I'}. Thus, wy, € Span{ > bPw,}2,
nel nel
for all n € I, and the proof of the proposition follows. [

Corollary 4.4. Suppose K is infinite, A is commutative, and M C R'™ is A-
invariant. If M is principally generated as an R ®y A-module by f, and if m;(f) €
K™ for some 1 < i <1, then M is a free rank m family generated by A-invariants
over Spec R.

Proof. Throughout this proof, we let [p] denote the set {1,...,p}. Let m(f) =

v € K™. By Lemma 4.1, there exist aq,...,a,, € A such that M is a free rank m
summand of R'™ and M is generated as an R-module by fai,..., fa,,. Thus,
A" M is generated by fa; A --- A fa,, as an R-module. On the other hand,
f = ziuy + - + 2ju; where u; = (0,---,0,v;,0,---,0) € S® has ith nonzero

projection to S, and

Ty =Y 14 ®bij € R®y Al
j=1

Thus, A" M is generated by (Zé:l xiug)ag A A (22:1 x;u;)am which equals

Z Tiy Uiy @1 N o ATy, Wi, Q.
(21 5eemstm ) E[L]™
Expanding further, we find the expression above equals
> S (i ®big) uiar A A (ri, ©bi,,) Uz'mam>’
(ila'“aim)e[l]m (jla“"jm)e[”]m

which equals

(16) E Tirgs * " Tigngn Wiy Oinjy @1 A= Ay by g Gy
J
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where J = ([I] x [n])™. In order to prove M is generated by A-invariants, it suffices
to prove (16) is an element in the image of the composition

(17) Rog Ny — Roxg N"K'™ S N"R™,

whose left arrow is induced by inclusion.

Let S,, denote the mth symmetric group. We note that S,, acts on J via
g ((i17j1)7 SERE) (Zma]m)) = ((ia(l)aja(l))v ceey (io(m)aja(’m)))v and so J is partitioned
into the orbits of this action. Thus, in order to prove (16) is an element in the
image of (17), it suffices to show

w= Z uiau)big(l)jau)al TARRRNA uia(m)bia(m)ja(m)am
TES,

is an element of Ay, since (16) is an R-linear combination of images of terms of
the form 1 ®x w under (17). If we let wy = w;,b;,j, for 1 < ¢ < m, and we let
n=(1,...,1) € ZZ,, w is of the form wy, (defined in Proposition 4.3). Since K is
infinite, the corollary follows from Proposition 4.3. (]

We end this section by constructing collections of affine open subfunctors of
Fa(m,n) and Ha(m,n) which cover their K-rational points.

For the remainder of this section, B will denote the K-algebra K[z1,. .., Zm—m],
and

((r1y...ymm)) C RI™

will denote the R ®; A-submodule of R'™ generated by (r1,...,7,). We will
abuse notation as follows: if C' and D are K-algebras and ¢ € hgpec (D), we let
1 : C'— D denote the induced map of rings.

For each 1 < i <, and each R, we define a map

(piR : hSpecB(R) - G(mvn)(R)
as follows: if ¥ € hgpec B(R), let
(18) ®ir(v) = ((¥(21), .., ¥(@(i-1)m), 1,0, ., 0, V(T(i-1)m+1), - - -, Y(Tim—m)))-

Lemma 4.5. &, is a well defined map of sets, and induces a natural transfor-
mation ®; : hgpeez — G(m,n) which factors through the inclusion Fa(m,n) —
G(m,n). Furthermore, if K is infinite and A is commutative, then ®; factors
through the inclusion Ha(m,n) — G(m,n).

Proof. Suppose i) € hgpec g(R). By Lemma 4.1, ®;z(¢) is a free rank m A-invariant
submodule of R'™, whence the first assertion. The proof that ®; 5 induces a natural
transformation ®; : hgpec 5 — G(m,n) follows from a routine computation, which
we omit. Since ®; (1)) is A-invariant, ®; factors through the inclusion Fy(m,n) —
G(m,n). If K is infinite and A is commutative, Corollary 4.4 implies that @, z(v))
is generated by A-invariants. Thus, ®; factors through the inclusion H4(m,n) —
G(m,n). O

We abuse notation by denoting both factors in the above lemma by ®;.

Lemma 4.6. ®; : hgpec 5 — Fa(m,n) is an open subfunctor. Furthermore, if K is
infinite and A is commutative, then ®; : hgpec B — Ha(m,n) is an open subfunctor.
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Proof. Suppose VU : hgpec g — Fa(m,n) is a natural transformation. By Lemma
4.5, we must prove that, if hgpec p,w is the pullback in the diagram

r
hSpec BY— hSpeC R

l v

hSpec B ?FA (m7 n)

then the induced map I' : hgpec B,y — Pgpec r cOrresponds to the inclusion of an
affine open subscheme of Spec R.

By [2, Exercise VI-6, p. 254], this is equivalent to showing that there exists some
ideal I of R such that, for any K-algebra T,

(19) im Dy = {6 € hgpec r(T)|6(1)T =T

Let fi,..., fm € R'™ denote a basis for ¥(idg), and suppose f; has ith coordinate
fij. Let a denote the m x m-matrix whose pth column is (fi—1)m+1,p,-- - fimp)t,
and let I = (deta). We prove that I satisfies (19). That is, we prove that a
homomorphism ¢ : R — T has the property that

(20) \I]((S) = <(6(xl)a cee 7ﬂ(x(i—1)m)v ]-7 Oa R Oaﬂ<x(i—1)m+l)a - 7ﬂ($lm—m))>

for some §: B — T iff §(I)T =T.

Since I is principle, 6 : R — T is such that §(I)T = T iff 6(det a) is a unit in T,
which occurs iff the m xm-matrix whose pth column is (6(f(;—1)m+1,p)5 - - » (fimp))t
is invertible. By naturality of ¥, ¥(d) is the image of the composition

TRrV(dr) - T®rR"—T"

whose left arrow is induced by inclusion ¥(idg) — R"™. Thus, if 6(f;) denotes
(6(f1)s---s0(fim,;))t € T'™, then §(f1),...,8(fm) is a basis for ¥(§). This im-
plies that the m x m-matrix whose pth column is (6(fi—1)m+1,p)s---»0(fimp))" is
invertible iff the projection of ¥(J) to the (i — 1)m + 1 through the imth factors is
onto. This occurs iff

N = <(ﬂ($1), “ee ,ﬂ(a:(i,l)m), 1, O, ‘e ,0, 6(1‘(i,1)m+1), ‘e ,ﬁ(l‘lm_m)» C \I’(5)

for some 3 : B — T. By Lemma 4.1, N is a free rank m summand of R™. We
claim N = ¥(§). For, if m is a maximal ideal of T, it follows from Nakayama’s
Lemma [1, Corollary 4.8, p. 124] that Ny = ¥(0)n. Hence, N = ¥(4), and the
first assertion follows. To prove the second assertion, we note that the previous
argument holds, mutatis mutandis, after replacing F4(m,n) by Ha(m,n). |

Corollary 4.7. The open subfunctors ®; of Fa(m,n) cover the K -rational points
of Fa(m,n). That is,

Fa(m,n)(K) = U®;(hspee 5(K))-

Furthermore, if K is infinite and A is commutative, the open subfunctors ®; of
Ha(m,n) cover the K -rational points of H(m,n).

Proof. By Lemma 4.6, the functors ®; : hgpec B8 — Fa(m,n) are open. If M is a
free rank m summand of K™ which is A-invariant, then there exists an 7 such that
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some element of M has nonzero projection onto the (i — 1)m + 1 through the imth
coordinates. Hence, since S is simple, M contains the submodule

<(b17 ey b(i*l)ma 17 07 s 707 b(ifl)m+17 ce 7bl7rb—’m)> - Klm7
where b1, ...,bpm—m € K. Thus, by Lemma 4.1,

M = <(b17 ey b(i*l)ma 1) 07 .. 707 b(ifl)m+17 .. 7blm—m)>7

so that M € ®;(hspec 5(K)). To prove the second assertion, we note that when K is
infinite and A is commutative, Lemma 4.6 implies that ®; is an open subfunctor of
H4(m,n). Thus, the second assertion follows from the first assertion and Remark
2.11. [l

We will use the following lemma to prove Theorem 4.9. The proof of the lemma
is straightforward, so we omit it.

Lemma 4.8. Let X be a topological space with open cover {A;}icr. If A; is irre-
ducible for all i and A; N Aj is nonempty for all ¢,j € I, then X is irreducible.

Theorem 4.9. Let F denote the open subscheme of Fa(m,n) obtained by glueing
the open subschemes of F a(m,n) defined by ®; for 1 < i < 1. Then F is smooth,
reduced, irreducible, of dimension lm — m and has the same K -rational points as
Fa(m,n). If K is infinite and A is commutative, Ha(m,n) contains a smooth,
reduced, irreducible, open subscheme of dimension lm — m which has the same K-
rational points as Ha(m,n).

Proof. The fact that Alfg‘_m is smooth, reduced and has dimension Im — m implies
that IF is smooth, reduced and has dimension im — m. The fact that F4(m,n) and
F have the same K-rational points follows from Corollary 4.7.

We denote the topological space of the open subscheme of F corresponding to
®; by A;. For any 7,7, the set A; N A; is nonempty. For example, if ¢ < j, the
intersection contains the point (0,...,0,1,0,...,0) € A;, where the nonzero entry
occurs in the (j —2)m + 1 position. The fact that F is irreducible now follows from
Lemma 4.8. The proof of the second assertion is similar, and we omit it. O

5. TWO-SIDED VECTOR SPACES

In this section, we describe our notation and conventions regarding two-sided
vector spaces, and we define the notion of rank of a two-sided vector space. We
end the section by reviewing facts about simple two-sided vector spaces which are
employed in the sequel.

Let V be a two-sided vector space. That is, V is a k-central K — K-bimodule
which is finite-dimensional as a left K-module. Right multiplication by =z € K
defines an endomorphism ¢(z) of xV, and the right action of K on V' is via the k-
algebra homomorphism ¢ : K — End(xV'). This motivates the following definition.

Definition 5.1. Let ¢ : K — M, (K) be a nonzero homomorphism. We denote
by K the two-sided vector space of left dimension n, where the left action is the
usual one and the right action is via ¢; that is,

(21) T (V1. 0n) = (TU1, .., 20p), (U1, Un) - = (V1,...,0,)0().

We shall always write scalars as acting to the left of elements of K and matrices
acting to the right.
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If V is a two-sided vector space, we let dimg V' denote the dimension of V' as a
left K-module. If dimg V' = n, then choosing a left basis for V' shows that V & K ;}
for some homomorphism ¢ : K — M, (K). Throughout the rest of this paper, V'
will denote the two-sided vector space K7, W will denote a two-sided vector space
and S will denote a simple two-sided vector space.

We denote the category of two-sided vector spaces by Vect K. We shall denote by
KP(K) the Quillen K-theory of Vect(K) (the superscript stands for “bimodule”).
The groups K (B) were computed in [4, Theorem 4.1].

Definition 5.2. The rank of a two-sided vector space W, denoted [W], is the class
of W in KF(K).

Thus, the rank of W is just the sums of the ranks of the simples (with multiplic-
ity) appearing in the composition series of W.

We conclude this section with a description of the simple objects in VectK. Let
K denote an algebraic closure of K. We write Emb(K) for the set of k-linear
embeddings of K into K, and G = G(K) for the group Aut(K/K).

The group G acts on Emb(K) by left composition. Given A € Emb(K), we
denote the orbit of A under this action by A%, and we write K ()) for the composite
field K Vim(\).

We denote the set of finite orbits of Emb(K) under the action of G by A(K).
The following is a consequence of the proof of [4, Theorem 3.2]:

Theorem 5.3. If K is perfect, there is a bijection from simple objects in Vect(K)
to A(K). Moreover, if V is a simple two-sided vector space mapping to A& € A(K),
and if \¢ = {01\, ..., 0mA}, then dimg V = |\Y| and there is a basis for the image
of the composition

KN egV > KN eg K" = KO)"
in which ¢ is a diagonal matrix with entries o1\, ..., 0mA.

We denote the simple two-sided vector space corresponding to A“ under the
bijection in Theorem 5.3 by V().
We will need the following Corollary to [6, Lemma 3.13]:

Lemma 5.4. Let F denote an extension field of k. If S and S’ are left finite-
dimensional, non-isomorphic simple F' ® K-modules, then Ext};@,kK(S, S =0.

Since a two-sided vector space is just a K ®j K-module, Lemma 5.4 implies that
VVi&- &V, where V; is S;-homogeneous for some simple S;.

6. PARAMETER SPACES OF TWO-SIDED SUBSPACES OF V
The purpose of this section is to use Fa(m,n), Ga(m,n), and Hy(m,n) to
construct and study parameter spaces of two-sided subspaces of V.

6.1. The functors F,([W], V), G4([W],V), and Hy([W],V).

Definition 6.1. If V is S-homogeneous and W is a two-sided vector space of rank
q[S], we let Fy([W],V)(—) : K — alg — Sets denote the functor Fi,, 4(gm,n).
If W is not S-homogeneous, we let Fy([W],V)(R) = 0.
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Now suppose V =V @ --- @ V,., where V; is S;-homogeneous and S; is simple,
¢i(x) is the restriction of ¢(z) to Vi, and [W] = ¢1[S1] + -+ + ¢-[Sr]. We let
Fy([W],V)(—) : K — alg — Sets denote the functor

F¢1(q1[51],V1) X X F¢T(QT[S7‘]7V;")ﬂ

where the product is taken over hgpec K -
If W has a composition factor not in {Si,...,S,}, we let Fy([W],V)(R) = 0.

We call elements of Fy,([W], V)(R) free rank [W] ¢-invariant families over Spec R,
or free ¢p-invariant families when W and R are understood.

Definition 6.2. If V is S-homogeneous and W is a two-sided vector space of rank
q[S], we let G4([W],V)(—) : K — alg — Sets denote the functor Giy, 4(gm,n).

If W is not S-homogeneous, we let G,([W],V)(R) = 0.

Now suppose V =V & --- @& V,., where V; is S;-homogeneous and S; is simple,
¢i(x) is the restriction of ¢(z) to Vi, and [W] = ¢i[S1] + -+ + ¢-[Sr]. We let
Gy([W],V)(=) : K — alg — Sets denote the functor

G¢1 (Q1[Sl]7 Vl) XX G¢T(qT[ST]’VF)’

where the product is taken over hgpec i -
If W has a composition factor not in {S1,...,S,}, we let G4 ([W],V)(R) = 0.

We call elements of Gy ([W], V)(R) free rank [W] families generated by ¢-invariants
over Spec R, or free families generated by ¢-invariants when W and R are under-
stood.

Definition 6.3. If V is S-homogeneous and W is a two-sided vector space of rank
qlS], we let Hy([W],V)(—) : K — alg — Sets denote the functor Hiy, 4(gm,n).

If W is not S-homogeneous, we let Hy([W],V)(R) = 0.

Now suppose V =V, @ --- @ V,., where V; is S;-homogeneous and S; is simple,
¢i(x) is the restriction of ¢(z) to Vi, and [W] = ¢1[S1] + -+ + ¢-[Sr]. We let
Hy([W],V)(—) : K — alg — Sets denote the functor

Hy, (q1[S1], V1) x -+ x Hy, (qr[Sr], V2),

where the product is taken over hgpec i -
If W has a composition factor not in {Si,...,S,}, we let Hy([W],V)(R) = 0.

We call elements of Hy([W],V)(R) free rank [W] ¢-invariant families generated
by ¢-invariants over Spec R, or free ¢-invariant families generated by ¢-invariants
when W and R are understood.

Lemma 6.4. The K-rational points of Fy([W],V), G¢([W],V), and Hy([W],V)
are equal to the set of two-sided rank [W] subspaces of V.

Proof. We first show that the three functors above have the same K-rational points.
From the definitions of Fy,([W], V), G4([W], V), and Hy([W], V), it suffices to prove
the result when V' is homogeneous. Thus, it suffices to prove

Fim ¢(m, n)(K) = Gim ¢ (m,n)(K) = Him ¢(m, n)(K)
when K™ is homogeneous as a K ®j, im ¢-module. Since ¢ : K — M, (K) is a ring

homomorphism, im ¢ — {0} C GL,(K). Thus, the assertion follows from Remark
2.9 and Remark 2.11.



18 ADAM NYMAN

To complete the proof of the lemma, it suffices to prove that
Fy([W],V)(K) = {two-sided rank [W] subspaces of V'}.

If V' is homogeneous, this follows immediately from the definition of Fin, ¢(m,n). If
V' is not homogeneous, the result follows from the fact that V', and any two-sided

subspace of V', has a direct sum decomposition into its homogeneous components.
|

We now find conditions under which Fy([S], V) # G4([S], V) and Fy([S], V) #
Hy([S], V).

Lemma 6.5. Suppose \1,..., A\ € Emb(K) are distinct and |k| > m. If
{il,...,im} C {1,...,m}

is a multiset with repetitions, then there exists an a € K such that
(22) [T 7@ # ], (@)
j=1 i=1

Proof. First we claim that there exists an element b € K such that there is an
inequality of multisets

{A), .. A (D)} £ {Ni, (B), ..., N, (D)}
If not, we would have
D=2 A
j=1 j=1
which is a nontrivial dependency relation among {1, ..., A, } as k-linear functions
from K to K. This contradicts the linear independence of characters from K to K,

which establishes our claim.
With b as above, we have

in the ring K[z]. Thus
HOES | [CEPYOIEY | (CEPHO)
Jj=1 Jj=1

has at most m roots. Since |k| > m, we may choose ¢ € k such that f(c) # 0. Since
A; is k-linear, we have

H()\j(c —b) - _H()\z'j (c=b)) = H(C —(0) - H(C — i, (b)) = f(e) # 0.
Thus (22) holds with a = ¢ — b. O

Corollary 6.6. Suppose m € N is such that |k| > m > 1, K is perfect and
A € Emb(K) is such that [\¢| = m (see Section 5 for notation). If V(\)®2 C V,
then there exist free rank [V ()] ¢-invariant families over Spec K (\) which are not
generated by im ¢p-invariants.
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Proof. Suppose A\¢ = {01, ...,0mA}. Let M be a free rank [V ()\)] ¢-invariant

family over Spec K (\) which is generated by ¢-eigenvectors vy, ..., vy, with eigen-
values

O'il)\, e ;Uim)\
respectively, such that the multiset {i1,...,%,,} has repetitions. Then the eigen-

value of any generator of A" M equals [| O\ On the other hand, if M were gen-
erated by im ¢-invariants, any generator of A" M would have eigenvalue ] j oA
Thus, by Lemma 6.5, M is a free rank [V (\)] ¢-invariant family which is not gen-
erated by im ¢-invariants. [

Example 6.7. Suppose p = 3v/2, ¢ is a primitive 3rd root of unity, & = Q and
K =Q(p). Fori=0,1, let

2 .

(> apt) = aip’ — azp?

1=0
and let A(z) = Aog(x) + A1(z)¢. Then V(A) is a two-dimensional simple two-sided
vector space [4, Example 3.9], and thus, by Corollary 6.6, V = V()\)®? contains
free rank V(X)) ¢-invariant families over Spec K(\) which are not generated by
im ¢-invariants. In other words,

Fy((VOL VN K N) # Hg (V] VNP2 (K (V).
It follows immediately that
Fy((VOOLVNF)E ) # Go([VN], VT (E ).

Remark 6.8. It follows from the previous example and the definitions of Fy,([W],V),
Gy([W], V), and Hy([W],V) that there exist A, m and n such that Fa(m,n) #
Ga(m,n) and Fa(m,n) # Ha(m,n).

6.2. F-rational points of G4([S],V) and Hy([S],V). Let F be an extension
field of K. In this subsection, we show that every element of G4([S],V)(F) and
of Hy([S],V)(F) is isomorphic to F ® S as F ®; K-modules. Throughout this
subsection, we assume, without loss of generality, that V is S-homogeneous. Since,
by Lemma 2.8, G4([S], V)(F) = Hy([S], V)(F), it suffices to prove the result for
Gy([S], V)(F). We assume throughout this subsection that dimg S = m.

Since the sum of all simple submodules of V' is a direct summand of V' as a left
K-module, V has a left K-module decomposition

(23) V=L&N,

where N contains no simple two-sided subspaces of V and L = S%! is a direct sum
of simple two-sided subspaces of V.

Lemma 6.9. Every free rank [S] family generated by ¢-invariants over Spec F is
contained in F Qg L.

Proof. Assume N # 0 and suppose M is a free rank [S] family generated by ¢-
invariants over Spec F', with basis {v; +w; }[™;, where v; is an element of the image
of the composition

(24) Fox N > F@gV S F"
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induced by the inclusion N C V', and w; is an element of the image of the compo-
sition
(25) FoxL—F@gV > F"

induced by the inclusion L C V. Since M is generated by im ¢-invariants, A" M is
contained in the image of the composition

induced by the inclusion A™ L — A™ V. On the other hand,
(26) (v +wi) A A (U + W) = w1 A -+ Awyy, + wedges with at least one v;.

Since A™ M # 0, this implies that wy A -+ A w,, # 0, and that the sum of the
other terms on the right-hand side of (26) equals 0. We claim each of the terms

VI AW A AWy ooy W1 Ace s AWp—1 A Uy, equals zero, which would prove the
assertion. To this end, let f1,..., f, denote a basis for the image of (24), and
suppose fp41,---; fq, W1, .., Wn is a basis for the image of (25). Let

Blz{w1A~-~/\wm}U( U {fjl/\"'/\fjm})

1<51 < <jm<q

m—1
BQU< U {fil/\..'/\fir/\wiTﬁ-l/\.'./\wiqn}>7

r=2 \ 1<i;<-<i,<q
1<ty 1< i <m0
q q
Bs = (U{wl/\fi/\wg/\---/\wm}> y---u (U{wl/\~-~/\wm_1 /\fi}>,
1=1 1=1
and

q
By = U{fi/\wg/\wg/\---/\wm}.
i=1
The sets By, Ba, B3, By form a partition of a basis for A" F™. Since the right-hand
side of (26) equals wy A+« AWy, v1 Awa A+ - - Awyy, i a linear combination of elements
in By U By U Bs. On the other hand, v1 A ws A -+ A w,, is a linear combination
of elements in By. We conclude that v; Aws A -+ Aw,, = 0. A similar argument
implies that wy A+ - Aw;—1 Av; Awip1 A+ - Awy, = 0 for 1 <4 < m, and the result
follows. O

Theorem 6.10. Suppose |k| > m, K is perfect, and K C F is an extension of
fields. If M is a free rank [S] family generated by ¢-invariants over Spec F, then
M==2FQgS as F ®, K-modules.

Proof. By Lemma 6.9, we may assume M is contained in the image of the compo-
sition

FRrL—FRrVSF"
induced by the inclusion L C V. Thus, we may assume V is semisimple.

Let F denote an algebraic closure of F' containing K, let M denote the image of

the composition

FopM — F®p F" ifn
whose left arrow is induced by inclusion, and let M have generators wi, . .., Wy, as an
F-module. By Lemma 2.4, M is generated by im ¢-invariants. Thus, Theorem 5.3
implies that the ¢-eigenvalues of wy A -+ - A w,,, must equal o1 A(x) - - - o, A(x) for all



GRASSMANNIANS OF TWO-SIDED VECTOR SPACES 21

x € K, where X is a k-linear embedding of K into K, o1, ..., 0y, are automorphisms
of K over K, and {o1],...,0,\} are distinct. By Lemma 2.8, M is ¢-invariant.
Thus, M has a ¢-eigenvector, v1. Since v is also an eigenvector in F'> Fn? it must
have eigenvalue o;, \. For 1 < j < m, let v; € M be such that v; + (v1,...,vj_1) is
a ¢-eigenvector for M /(v1,va,...,vj_1), where (vy,...,v;_1) denotes the F ®j, K-
module generated by vy, ...,v;_1. Then vj+(vy,...,v;_1) has eigenvalue o, A, and,
thus, in the basis {vi,...,vm}, ¢(x)|57 is upper-triangular with diagonal entries
o Mx),... 0, A(x). Therefore,

det ¢(2)|g7 = o, M) - - - 04, A ().

By Lemma 6.5, we must have {i1,...,%,} = {1,...,m}. Since, by Lemma 5.4,
extensions of distinct simple left finite-dimensional F ®;, K-modules are split, there
exists a basis for M such that ¢(z)|57 is diagonal with entries o1 A\(2), ..., omA().
It follows that F@r M = FRp(F®Rk S) as F®j, K-modules. Thus, by an argument
similar to that given in the proof of [4, Lemma 2.4], we conclude that M & F ®x S
as F' ®;, K-modules. O

6.3. The geometry of F,([W],V), G,([W],V), and Hy([W], V). For the readers
convenience, we collect here some consequences of our study of the geometry of
Fa(m,n), Ga(m,n) and Ha(m,n) in the case that A = im ¢, where ¢ : K —
M, (K) is a k-central ring homomorphism. We assume throughout the remainder
of this section that [V] =11[S1] + - -+ + 1.[S;], where Si,...,S, are non-isomorphic
simple modules with dim S; = m;, and that ¢;(z) is the restriction of ¢(x) to the
S;-homogeneous summand of V. Finally, we assume all products of schemes are
over Spec K.

Theorem 6.11. The functors Fy(q1[S1]+: - -+¢-[5+], V), Go(q1[S1]+ - -+¢-[S:], V),
and Hy(q1[S1] + - + ¢-[Sr], V) are represented by

]:[Fim o (Migi, mil;), HGim ¢: (Migqi, mil;), and HHim ¢ (Migi, mil;)

i=1 i=1 i=1

respectively.

Proof. Since Fy(m,n), Ga(m,n), and Ha(m,n) are representable by F4(m,n),
Ga(m,n), and Ha(m,n), the result follows from [2, p. 260]. O

We denote the schemes representing Fi,([W],V), Gg([W], V), and Hy([W],V)
by Fy([W], V), Gy([W], V), and Hy([IW], V), respectively:

Corollary 6.12. If K/k is finite and Galois then Fy([W],V) = Gu([W],V) =
Hy([W], V) and Fy(qu[S1] + - -- + ¢S], V) equals

HG(%‘, l;).
=1

.
Proof. We prove that Fy(q1[S1]+- - -+¢:[S:], V) = [1G(qi, ;). The other assertions
i=1

follow similarly. By the previous result, it suffices to prove that Fip, ¢, (migs, mil;) =
G(¢i,1;). The hypothesis on K/k is equivalent to K being a finite, separable exten-
sion of k such that Aut X = Emb K. Thus, m; =1 [4, Theorem 3.2] and S; & K,,
for some k-linear automorphism o; of K (note that, in this case, we do not require
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that K be perfect to apply [4, Theorem 3.2]). Since K ®j K is semisimple, ¢; is a
diagonal matrix with each diagonal entry equal to o;, and the assertion follows. [

Remark 6.13. The previous result also follows from the second part of [5, Theorem
1, p. 321].

Now assume that V is semisimple. Before we state our next result, we need
to introduce some notation. For 1 < ¢ < r, let B; = K[;1,...,%il;m;—m;], let
B = K[{zi1,. -, %il;mi—m, }1—1) and, for each r-tuple J = (j1,...,Jr) such that
1 < j; <l; define an inclusion of functors

Pyt hspec By X 0+ X hspec B, — F, ([S1], V1) X -+ x Fy, ([Sr], Vi)

by ®; = ®;, x --- x ®; , where ®; is defined by (18), and where all products
are over hgpec k. We abuse notation by letting ®; denote the induced natural
transformation

o P
hSpecB i hSpeCBl X X hSpeCBr HJ F¢([Sl] +--- 4+ [STLV)
In a similar fashion, we can define an inclusion of functors
Dt hspec By X+ X hspec B, — Hg, ([S1], V1) x -+ x Hy, ([Sr], V),

where we have abused notation as in Section 4.
The following result is an immediate consequence of Lemma 4.6 and Corollary
4.7.

Theorem 6.14. For all r-tuples J = (j1,...,Jr) such that 1 < j; < l;, ®; :
hspec B = Fo([S1]+- - -+[Sr], V) is an open subfunctor, and the open subfunctors ® ;
cover the K -rational points of Fy([S1]+---+[Sr], V). Furthermore, if K is infinite,
the same result holds for Hy([S1]+-- -+ [Sy], V) in place of Fy([S1]+---+[S:], V).

The following follows from the above result and from an argument similar to
that used to prove Theorem 4.9.

Corollary 6.15. Fy([S1]+---+[Sy],V) and Hy([S1]+---+[S:], V) contain smooth,
reduced, irreducible open subschemes of dimension 22:1 lym; —m; which cover their
K -rational points.

The following example illustrates the fact that the open subfunctors ®; do not
always form an open cover of Fy([S], S®!) or Hy([S], S®).

Example 6.16. Suppose p = 3v/2, ( is a primitive 3rd root of unity, & = Q and
K =Q(p). For i =0,1, let
2
(> apt) = aip’ — azp?
1=0
and let A(xz) = Ag(x) + A1 (x)C. Let V(X) denote the corresponding two-dimensional
simple K ®; K-module, so that the right action of K on V()) is given by ¢(x) =
Ao(w) —A1(z) _ @2 4

()\1(1‘) () + ho(@) [4, Example 3.9]. Let V = V(A)®?, and let {e;}i;
denote the standard unit vectors of K(¢)*. Then

M = SpanK(O{el + Cea,e3 + C264} - K(C)4 =K oxV

is a free ¢-invariant rank [V(A)] family over Spec K({) whose projections onto the
first and second coordinates of K ({)*, and onto the third and fourth coordinates of
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2
K(¢)*, are not onto. In particular, M is not an element of J!l(bj(hSpecA(K(C))),

and hence by [2, Exercise VI-II, p. 256], the open subfunctors ®; do not cover
Fy([VV], VVE2).

We claim that M is generated by im ¢-invariants, which would establish that the
open subfunctors ®; do not cover Hy([V(A)], V(X\)®2). To prove the claim, we first
note that

(27)  (e1+Cea) A(es+ CPes) =e1 Aes + (Per Neg+Cea Aes + ez Aey.
On the other hand, if we let wy = e;, wy = e3, a1 = 1 and as = p, then
wip(ar) Nwag(az) +wag(ar) ANwidaz) = —pler Aes — ez Aes)

is an element of /\12m¢ by Proposition 4.3. Similarly, if we let wy = e1, ws = ey,
a; =1 and ag = p, then

wid(ar) A wad(ag) + wad(ar) Awid(as) = pler ANes —ep Aeg —eq Aes)
is an element of /\12m s by Proposition 4.3. It follows that (27) is an element of the

image of K({) ®k /\12m¢ — K() @ N K* 5 A’ K(¢)*, and hence that M is
generated by im ¢-invariants.
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