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always work over commutative ring k,

X is (comm.) quasi-compact separated k-scheme

Bimodk(C,D)=category of k-linear right exact F : C → D
commuting with direct limits

Our main result concerns the structure of objects in
Bimodk(QcohP

1
k ,Modk) when k = k.
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R , S rings, F an R − S-bimodule

−⊗R F : ModR → ModS

Theorem (Eilenberg, Watts 1960)

Every F ∈ Bimodk(ModR ,ModS) is an integral transform.

Still true if ModS is replaced by QcohY where Y is a scheme.
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F) : QcohX → QcohY

e.g.

If f : Y → X is a morphism of schemes then
f ∗ : QcohX → QcohY is an integral transform.

e.g.

Let X = P
1 and Y = Spec k. Then

H1(X ,−) ∈ Bimodk(QcohX ,QcohY ) is not an integral transform.

Problem

When is F ∈ Bimodk(QcohX ,QcohY ) an integral transform?
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Non-commutative Space := Grothendieck Category =

(k-linear) abelian category with

exact direct limits and

a generator.

Notation: Y geometry or ModY category theory

The following are non-commutative spaces:

Qcoh X

Mod R , R a ring

Proj A := GrA/TorsA where A is Z-graded
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Between Noncommutative Spaces

e.g.

Let f : Y → X denote a morphism of schemes such that (f ∗, f∗, f
!)

is an adjoint triple (e.g. a closed immersion of varieties).
Then

QcohY
f∗
⇋

f ∗
QcohX

and

QcohX
f !

⇋

f∗
QcohY

are morphisms of noncommutative spaces Y → X and X → Y .

The latter may not come from a morphism of schemes.
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Eilenberg-Watts Functor

Y a scheme

Question

Given F ∈ Bimodk(QcohX ,QcohY ), which integral transform is
closest to F?

v : V → X denotes inclusion of affine open
Fv∗ ∈ Bimodk(QcohV ,QcohY ) ⇒

Fv∗ ∼= −⊗OV
FV

for some FV ∈ QcohV × Y .

Theorem (Van den Bergh, N.)

The collection FV induces (via gluing) a functor

W (−) : Bimodk(QcohX ,QcohY ) → QcohX × Y
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The Eilenberg-Watts Theorem over Schemes II: Totally

Global Functors

F ∈ Bimodk(QcohX ,QcohY ) totally global if W (F ) = 0

e.g.

F = H1(P1,−) ∈ Bimodk(QcohP
1,Modk) is totally global.

Proposition

Let F ∈ Bimodk(QcohX ,QcohY ) be totally global. If X is noeth.
and SuppM lies in open affine subscheme of X , then FM = 0.

Theorem (N-Smith, 2008)

k = k, F ∈ Bimodk(QcohP
1,Modk). If

F is totally global and

F preserves noetherian objects, then

F ∼=
⊕∞

i=m H1(P1, (−)(i))⊕ni
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Eilenberg-Watts Theorem over Schemes III

F ∈ Bimodk(QcohX ,QcohY ), τ, π : X × Y → X ,Y projections

Theorem (N)

There is a natural transformation

ΓF : F → π∗(τ
∗ −⊗OX×Y

W (F ))

such that ker ΓF and cok ΓF are totally global.

It follows that ΓF is an isomorphism if X is affine or F is exact.

Problem

What is the structure of obstructions ker ΓF and cok ΓF ? If
X = P

1
k? Y = Spec k? F preserves noetherian objects? k = k?

e.g.

If f : Y → X is morphism of noetherian schemes, then f ∗ preserves
noetherian objects.
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Abuse of Notation

If Y = Spec k:

Projection τ : X × Y → X is isomorphism

write W (F ) instead of τ∗W (F ) and

identify Qcoh(Spec k) and Modk, so

ΓF : F → π∗(τ
∗ −⊗OX×Y

W (F )) ≡ H0(X ,−⊗OX
W (F )).
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the short exact sequence
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ΓF
→ H0(P1,−⊗ W (F )) → 0

splits so that

F ∼= ⊕∞
i=−nH
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Applications

Suppose k = k, F ∈ Bimodk(QcohP
1
k ,Modk), and F preserves

noetherian objects. Then,

Corollary

F is an integral transform iff F is exact on vector bundles.

Corollary

F ∼= f ∗ for some f : Spec k → X iff F is exact on vector bundles
and dimk F (O(i)) = 1 for some i .

Exercise

Use main result to give elementary proof of Serre Duality, i.e.
HomO

P1 (−,O)∗ ∼= H1(P1,− ⊗O
P1 O(−2)).
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Overview of Proof of Main Theorem

Eilenberg-Watts over Schemes ⇒ ∃

0 → ker ΓF → F
ΓF
→ H0(P1,−⊗ W (F )) → cok ΓF → 0

with ker ΓF , cok ΓF totally global. Then

1 W (F ) is noetherian,

2 cok ΓF = 0, and

3 ker ΓF = ⊕∞
i=−nH

1(P1, (−)(i))⊕ni .
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Structure of ker ΓF

Let f (n) := dimk ker ΓF (O(n))

Lemma

f (n) is eventually constant. Let m = eventual dimension.

Thus either

m = 0 in which case

ker ΓF = ⊕∞
i=−nH

1(P1, (−)(i))⊕ni

by classification of totally global objects in
Bimodk(QcohP

1
k ,Modk), or

m > 0. In this case a contradiction is found.

Adam Nyman



The case m > 0

Adam Nyman



The case m > 0

Strategy for Contradiction

Prove ker ΓF is ”large” enough to contain non-totally global
functor.

Adam Nyman



The case m > 0

Strategy for Contradiction

Prove ker ΓF is ”large” enough to contain non-totally global
functor.

For q ∈ P
1, define Rq by

Rq(−) := H0(P1, ((−)/H0
q(−)) ⊗ k(q)),

where H0
q sends a sheaf to its subsheaf with support at q.

Adam Nyman



The case m > 0

Strategy for Contradiction

Prove ker ΓF is ”large” enough to contain non-totally global
functor.

For q ∈ P
1, define Rq by

Rq(−) := H0(P1, ((−)/H0
q(−)) ⊗ k(q)),

where H0
q sends a sheaf to its subsheaf with support at q.

Lemma

Adam Nyman



The case m > 0

Strategy for Contradiction

Prove ker ΓF is ”large” enough to contain non-totally global
functor.

For q ∈ P
1, define Rq by

Rq(−) := H0(P1, ((−)/H0
q(−)) ⊗ k(q)),

where H0
q sends a sheaf to its subsheaf with support at q.

Lemma

Rq(T ) = 0 for all coherent torsion modules T ,

Adam Nyman



The case m > 0

Strategy for Contradiction

Prove ker ΓF is ”large” enough to contain non-totally global
functor.

For q ∈ P
1, define Rq by

Rq(−) := H0(P1, ((−)/H0
q(−)) ⊗ k(q)),

where H0
q sends a sheaf to its subsheaf with support at q.

Lemma

Rq(T ) = 0 for all coherent torsion modules T ,

dimk Rq(O(i)) = 1 for all i .

Adam Nyman



The case m > 0

Strategy for Contradiction

Prove ker ΓF is ”large” enough to contain non-totally global
functor.

For q ∈ P
1, define Rq by

Rq(−) := H0(P1, ((−)/H0
q(−)) ⊗ k(q)),

where H0
q sends a sheaf to its subsheaf with support at q.

Lemma

Rq(T ) = 0 for all coherent torsion modules T ,

dimk Rq(O(i)) = 1 for all i .

If u : U → P
1 is inclusion of an open affine containing q, then

Rq(u∗OU) 6= 0

Adam Nyman



The case m > 0

Strategy for Contradiction

Prove ker ΓF is ”large” enough to contain non-totally global
functor.

For q ∈ P
1, define Rq by

Rq(−) := H0(P1, ((−)/H0
q(−)) ⊗ k(q)),

where H0
q sends a sheaf to its subsheaf with support at q.

Lemma

Rq(T ) = 0 for all coherent torsion modules T ,

dimk Rq(O(i)) = 1 for all i .

If u : U → P
1 is inclusion of an open affine containing q, then

Rq(u∗OU) 6= 0 Therefore, Rq not totally global.

Adam Nyman



The case m > 0

Strategy for Contradiction

Prove ker ΓF is ”large” enough to contain non-totally global
functor.

For q ∈ P
1, define Rq by

Rq(−) := H0(P1, ((−)/H0
q(−)) ⊗ k(q)),

where H0
q sends a sheaf to its subsheaf with support at q.

Lemma

Rq(T ) = 0 for all coherent torsion modules T ,

dimk Rq(O(i)) = 1 for all i .

If u : U → P
1 is inclusion of an open affine containing q, then

Rq(u∗OU) 6= 0 Therefore, Rq not totally global.

Proposition

If m > 0, there exists q ∈ P
1 such that Rq ⊂ ker ΓF .
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G is totally global then Ω : F → G can be constructed inductively.

Lemma

Suppose ∀ n ∈ Z, morphisms ΩO(n) : F (O(n)) → G (O(n)) are
defined such that

F (O(i))
F (ψ)
→ F (O(i + 1))

Ω
O(i)





y





y

Ω
O(i+1)

G (O(i)) →
G(ψ)

G (O(i + 1))

commutes ∀ i ∈ Z and ψ ∈ HomO
P1
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Key Observation

Observation

If F ,G : QcohP
1 → Modk are k-linear, direct limit preserving and

G is totally global then Ω : F → G can be constructed inductively.

Lemma

Suppose ∀ n ∈ Z, morphisms ΩO(n) : F (O(n)) → G (O(n)) are
defined such that

F (O(i))
F (ψ)
→ F (O(i + 1))

Ω
O(i)





y





y

Ω
O(i+1)

G (O(i)) →
G(ψ)

G (O(i + 1))

commutes ∀ i ∈ Z and ψ ∈ HomO
P1

(O(i),O(i + 1)).
Then ∃! natural transformation Ω : F → G extending Ω.
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Thank you for your attention!
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