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Conventions and Notation

@ always work over commutative ring k,
@ X is (comm.) quasi-compact separated k-scheme

@ Bimodg(C, D)=category of k-linear right exact F : C — D
commuting with direct limits

Our main result concerns the structure of objects in
Bimody(QcohP}, Modk) when k = k.
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The Eilenberg-Watts Theorem

R, S rings, F an R — S-bimodule

— ®r F : ModR — ModS

Theorem (Eilenberg, Watts 1960)
Every F € Bimodx(ModR, ModS) is an integral transform.

Still true if ModS is replaced by QcohY where Y is a scheme.
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Integral Transforms in Algebraic Geometry
Y scheme XxY F € Qcoh(X x Y)
X Y
T (T5(—) @0y .y F) : QcohX — QcohY

If f:Y — X is a morphism of schemes then
f*: QcohX — QcohY is an integral transform.

A,

Let X = P! and Y = Speck. Then
HY(X, —) € Bimod,(QcohX, QcohY) is not an integral transform.

Problem
When is F € Bimod,(QcohX, QcohY') an integral transform?
- AdamNyman

Adam Nyman




Non-commutative Algebraic Geometry: Non-commutative

Spaces

Non-commutative Space := Grothendieck Category

Adam Nyman



Non-commutative Algebraic Geometry: Non-commutative

Spaces

Non-commutative Space := Grothendieck Category =

@ (k-linear) abelian category with

Adam Nyman



Non-commutative Algebraic Geometry: Non-commutative

Spaces

Non-commutative Space := Grothendieck Category =
@ (k-linear) abelian category with

@ exact direct limits and

Adam Nyman



Non-commutative Algebraic Geometry: Non-commutative

Spaces

Non-commutative Space := Grothendieck Category =
@ (k-linear) abelian category with
@ exact direct limits and

@ a generator.

Adam Nyman



Non-commutative Algebraic Geometry: Non-commutative

Spaces

Non-commutative Space := Grothendieck Category =
@ (k-linear) abelian category with
@ exact direct limits and
@ a generator.

Notation: Y geometry

Adam Nyman



Non-commutative Algebraic Geometry: Non-commutative

Spaces

Non-commutative Space := Grothendieck Category =
@ (k-linear) abelian category with
@ exact direct limits and
@ a generator.

Notation: Y geometry or ModY category theory

Adam Nyman



Non-commutative Algebraic Geometry: Non-commutative

Spaces

Non-commutative Space := Grothendieck Category =
@ (k-linear) abelian category with
@ exact direct limits and
@ a generator.

Notation: Y geometry or ModY category theory

The following are non-commutative spaces:

Adam Nyman



Non-commutative Algebraic Geometry: Non-commutative

Spaces

Non-commutative Space := Grothendieck Category =
@ (k-linear) abelian category with
@ exact direct limits and
@ a generator.

Notation: Y geometry or ModY category theory

The following are non-commutative spaces:

@ Qcoh X

Adam Nyman



Non-commutative Algebraic Geometry: Non-commutative

Spaces

Non-commutative Space := Grothendieck Category =
@ (k-linear) abelian category with
@ exact direct limits and
@ a generator.

Notation: Y geometry or ModY category theory

The following are non-commutative spaces:

@ Qcoh X
® Mod R, R aring

Adam Nyman



Non-commutative Algebraic Geometry: Non-commutative

Spaces

Non-commutative Space := Grothendieck Category =
@ (k-linear) abelian category with
@ exact direct limits and
@ a generator.

Notation: Y geometry or ModY category theory

The following are non-commutative spaces:

@ Qcoh X
® Mod R, R aring
@ Proj A := GrA/TorsA where A is Z-graded
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Non-commutative Algebraic Geometry: Morphisms

Between Noncommutative Spaces

Y, Z non-commutative spaces

Y L. Z denotes adjoint pair (f*, f.) in the diagram

Mod Y fé ModZ

If f:Y — X is a morphism of schemes, (*,f.) is an adjoint pair.

Adjoint functor theorem =

Morphisms f : Y — Z . Bimodx(ModZ, ModY)).

Adam Nyman



Non-commutative Algebraic Geometry: Morphisms
Between Noncommutative Spaces

Let f : Y — X denote a morphism of schemes such that (f*, f,, f')
is an adjoint triple (e.g. a closed immersion of varieties).

Adam Nyman



Non-commutative Algebraic Geometry: Morphisms
Between Noncommutative Spaces

Let f : Y — X denote a morphism of schemes such that (f*, f,, f')
is an adjoint triple (e.g. a closed immersion of varieties).
Then

fi
QcohY f;‘ Qcoh X

and
f!
Qcoh X f: QcohY

are morphisms of noncommutative spaces Y — X and X — Y.

Adam Nyman



Non-commutative Algebraic Geometry: Morphisms
Between Noncommutative Spaces

Let f : Y — X denote a morphism of schemes such that (f*, f,, f')
is an adjoint triple (e.g. a closed immersion of varieties).
Then

fi
QcohY f;‘ Qcoh X

and
f!
Qcoh X f: QcohY

are morphisms of noncommutative spaces Y — X and X — Y.

The latter may not come from a morphism of schemes.
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The Eilenberg-Watts Theorem over Schemes |: The

Eilenberg-Watts Functor

Y a scheme

Given F € Bimod,(QcohX, QcohY'), which integral transform is
closest to F?

v : V — X denotes inclusion of affine open
Fv, € Bimod(QcohV,QcohY) =

Fv, = —®0, Fv

for some Fy € QcohV x Y.

Theorem (Van den Bergh, N.)

The collection Fy, induces (via gluing) a functor
W(-) : Bimodk(QcohX,QcohY) — QcohX x Y
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The Eilenberg-Watts Theorem over Schemes II: Totally

Global Functors

F € Bimod,(QcohX, QcohY) totally global if W(F) =0

F = HY(P!, —) € Bimod,(QcohP!, Modk) is totally global.

- -

Proposition

Let F € Bimodk(QcohX, QcohY') be totally global. If X is noeth.
and Supp M lies in open affine subscheme of X, then FM = 0.

-

Theorem (N-Smith, 2008)

k = k, F € Bimodx(QcohP!, Modk). If
@ F is totally global and
@ [ preserves noetherian objects, then

F = @R, HL(PL, (-)(7)"

Adam Nyman
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Eilenberg-Watts Theorem over Schemes ||

F € Bimodg(QcohX,QcohY), 7,m: X x Y — X, Y projections

There is a natural transformation

MF: F— m(r" —®oy,, W(F))

such that ker 'r and cok ¢ are totally global.

It follows that £ is an isomorphism if X is affine or F is exact.

Problem

What is the structure of obstructions ker 'r and cok g7 If B
X = Pi? Y = Spec k? F preserves noetherian objects? k = k?

If f:Y — X is morphism of noetherian schemes, then * preserves
noetherian objects.

Adam Nyman
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Abuse of Notation

If Y = Speck:

@ Projection 7: X X Y — X is isomorphism
o write W(F) instead of 7. W(F) and
@ identify Qcoh(Spec k) and Modk, so

M F— m(T" — ®ox,y W(F)) = HY (X, — ®ox W(F)).
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The Main Result

Let k = k.

Theorem (N)

If Fe Bimodk(QcohPi, Modk) preserves noetherian objects then
o W(F) is noetherian,
@ cokl'F =0,

@ there are nonnegative integers n, n; such that
ker [ = @ HY(PL, (-)(i))®", and

@ the short exact sequence
Te j0ml
0—kerlTg— F—= H (P, — @ W(F)) —0

splits so that

F=ao® HYPL (-)(1)®" @ H(P, — @ W(F)).

v
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Applications

Suppose k = k, F € Bimodx(QcohP}, Modk), and F preserves
noetherian objects. Then,

F is an integral transform iff F is exact on vector bundles.

F = f* for some f : Spec k — X iff F is exact on vector bundles
and dimy F(O(i)) = 1 for some i.

Use main result to give elementary proof of Serre Duality, i.e.
Homo,, (—, 0)* = HY(P!, — ®0,, O(-2)).
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Overview of Proof of Main Theorem

Adam Nyman



Overview of Proof of Main Theorem

Eilenberg-Watts over Schemes = 3

0 — kerTr — F 5 HOPY, — @ W(F)) — cok T — 0

Adam Nyman



Overview of Proof of Main Theorem

Eilenberg-Watts over Schemes = 3
0 — kerTr — F 5 HOPY, — @ W(F)) — cok T — 0

with ker ', cok I'g totally global. Then

Adam Nyman



Overview of Proof of Main Theorem

Eilenberg-Watts over Schemes = 3
0 — kerTr — F 5 HOPY, — @ W(F)) — cok T — 0

with ker ', cok I'g totally global. Then
© W(F) is noetherian,

Adam Nyman



Overview of Proof of Main Theorem

Eilenberg-Watts over Schemes = 3
0 — kerTr — F 5 HOPY, — @ W(F)) — cok T — 0

with ker ', cok I'g totally global. Then
© W(F) is noetherian,
Q coklF =0, and

Adam Nyman



Overview of Proof of Main Theorem

Eilenberg-Watts over Schemes = 3
0 — kerTr — F 5 HOPY, — @ W(F)) — cok T — 0

with ker ', cok I'g totally global. Then
© W(F) is noetherian,
Q cokl'F =0, and
© kerlr = @, H (B, (~)(1)*".

Adam Nyman
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Structure of ker[ g

Let f(n) := dimy ker [ £(O(n))

f(n) is eventually constant. Let m = eventual dimension.

Thus either

@ m = 0 in which case

ker g = @ HY(PL, (<) (i))®"™

I=—n

by classification of totally global objects in
Bimod, (QcohP}, Modk), or

@ m > 0. In this case a contradiction is found.

Adam Nyman
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Strategy for Contradiction

Prove ker ['r is "large” enough to contain non-totally global
functor.

For g € P!, define Rq by
Rq(—) == H(PY, ((—)/Hq(-)) @ k()

where Hg sends a sheaf to its subsheaf with support at g.

@ R4(7) = 0 for all coherent torsion modules 7,
o dimy Ry(O(i)) =1 for all i.

o If u: U — P! is inclusion of an open affine containing g, then
Rq(u.Oy) # 0 Therefore, R, not totally global.

Proposition

If m > 0, there exists g € P! such that Rq C kerTF.
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Observation

If F,G : QcohP! — Modk are k-linear, direct limit preserving and
G is totally global then 2 : F — G can be constructed inductively.

Lemma
Suppose V' n € Z, morphisms Q¢ : F(O(n)) — G(O(n)) are
defined such that

FO) @ Fo +1))

Qoml lgt’)(ﬁl)

G(O(i))G@)G(O(W 1))

commutes V i € Z and ¢ € Homo_, (O(i), O(i + 1)).
Then 3! natural transformation Q2 : F — G extending £2.

-
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Thank you for your attention!
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