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Conventions

@ always work over a field k
@ unless otherwise stated, work with right modules

@ always let C denote a k-linear Hom-finite abelian category.
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Part 1

Maps to Projective Spaces
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Maps from line bundles

Suppose
e X is a projective variety

@ L is line-bundle on X gen. by n+ 1 global sections.

Given (X, £), 3 morphism f : X — P".

Stein factorization of f

f factors as

X -£5 Proj T.(X, £) -5 Proj S(T(X, £)) = P"

where g proper, h finite.

v

Goal

Generalize above construction to produce maps from nc elliptic
curves to nc projective spaces.

V.
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Examples

Artin-Zhang (1994) and Polishchuk (2005) study nc
generalizations of g.

Elliptic curves in noncommutative projective planes

X a smooth elliptic curve. Artin, Tate and Van den Bergh
construct closed immersions f : X — P2_.

Theorem (S.P. Smith (2003))

If Ais a loc. finite noetherian N-graded algebra and J is a graded
ideal, then A — A/J induces closed immersion of noncommutative
spaces

ProjA/J — ProjA.

Double covers of P!

X a smooth elliptic curve. £ = deg. 2 line bundle over X. L
induces double cover X — P. No (very) nc analogue.
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Data associated to (X, £)

Given (X, L), we can construct:

@ a canonical finite map S(I'(X, £)) — (X, L),
@ an induced finite morphism
Proj (X, £) —2 Proj S(F(X, £)), and

@ pullback of Koszul complex over P” to X

n+1 1
0—>/\Jr V®£_”_1—>~-—>/\ VeRL!-s0x—-0

is exact, where V =T(X, L).

Koszul Complex

Let V =T(P",O(1)). 3 exact sequence

1 1
0 N\ V@Om(—n—1) 5 - = A\ V&Op(~1) = Opn — 0
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An Example

D, E Noncommutative Spaces
D -5 E denotes adjoint pair (*,£.) in the diagram

If f:Y — X is a morphism of commutative schemes, (*, f,) is an
adjoint pair.

Notion is too general. )

fx
Define QcohP? fﬁ QcohP?! by f* = Hl(]P’l, —). Then f* is not
exact on ses of vector-bundles so can't come from a map of
schemes.
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Part 2

Maps to Noncommutative Projective Spaces
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Replacement for £ (Polishchuk (2005))

Let X be a variety, £ a line bundle on X. Recall
M(X, L) = @ r(X,L£%m
n>0
depends on monoidal structure on CohX.

Categories natural in nc algebraic geometry (e.g. ModR) may not
have a monoidal structure.

Artin-Zhang (1994)

Given A € ob C, consider s’(LA) where s is autoequivalence of C.

Bondal-Polishchuk (1993), Polishchuk (2005)
Let £ := (L;)iez where L; € ObC

How do you form a ring from a sequence (L;);ez of objects of C?
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Z-algebras (Bondal and Polishchuk (1993))

A Z-algebra is ring A with vector space decomposition P
such that

o AjjAi C Ak,
o A,JAk/ =0 for k 75_/, and
@ Aj contains a unit ¢ so that ¢A = @j Ajj.

:,jEZ
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Periodicity (Sierra (2011))

Periodic Z-algebras generalize Z-graded algebras J

Let A be a Z-algebra. Let A({) be the Z-algebra with

A(0)ij == Aitrjte

Ais if A= A({) as algebras. J

Observation (Sierra (2011))

If Ais a 1-periodic Z-algebra, then A is Morita equivalent to a
Z-graded algebra.
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Replacement for I',(X, £) (Polishchuk (2005))

Let £ = (Lj)iez. Let (Bg)jj := Homc(L_j, £_;). Then B, with
mult. induced by composition, is a Z-algebra. J

The Z-algebra B plays the role of I',(X, L) J

Let £; := L®. Then B, is l-periodic and

GrB; = GrT (X, £).
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Replacement for S(I'(X, £))

The noncommutative symmetric algebra of £

We define Az to be quadratic part of Bg.

By construction, there is a morphism of Z-algebras
Aé — Bé.

analogous to

S(T(X, £)) — T4(X, L)

Relationship to Van den Bergh's S"¢(V)

Necessary and sufficient conditions on £ are known (N (2019)) to

ensure
Az = S™(V).
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Quadratic Duals (Bondal-Polishchuk (1993))

Definition of A'
@ A = locally finite, quadratic Z-algebra with relns /.

o Define A' = quadratic Z-algebra with gens

| A%
A1 = Aiin

with relations the kernel of

A1 ® Ay 2 (A1 ® Aiy1ive)” = i

induced by inclusion I,'},'+2 — A,'7,'+1 ® A,'+1’,'+2.

Motivating Example
In Z-graded case, we have S(V)' = A(V*)
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The Koszul complex of £

L = sequence of objects in C with End(L;) = k for all i, A:= A¢.
There is a complex of form

—>A+2’J®£_j_2—>A+1u®£_J 1—>AJ!-’D®£_J~—>O J

(fl7 AR )

Evaluation is map Hom(E, F) @ E= P E F.

Sample map A5, @ L o — AT ® L1

Ao © Lo A1 ®A12® L >
Ao1 ®@Hom(L 2, L 1) ® L
Ao @ L1

Ao ® L3

2 b )

lIIZ l

<

Adam Nyman



Helices

Definition of Helix (Chan-N (2022))

A sequence £ = (L;)jecz of objects in C is a helix of length n if
for all i, J,

° the(e exists an m > 0 such that for all / > m,
Ext/(L;, Li+/) = 0 for all j > 0 (Serre vanishing).

e End(L;) = k (i.e. L;is "simple"), and

o there are f.d. vector spaces Vi 3;,..., V|, and exact
sequences whose right three terms are the Koszul complex

0 — Vigni®L jp—-—Viu3;®L_j 3 —

J+21®£,J 2& +1,J®,C,J 1—>AI*®£,JHO

where A = Ag.
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The map of noncommutative spaces induced by a helix

Let (Bﬁ)zo : B.

Theorem (Chan-N (2022))
If £ is a helix of length n, then

@ the canonical map
Vv: A — B

makes Be; a finitely generated Ag-module for all j, and

@ the map 1 descends to an adjoint pair

ProjB = ProjA..

Recall: TorsB =full subcategory of objects in GrB whose elements
generate right-bounded modules.

ProjB := GrB/TorsB.
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Part 3

Interlude: Noncommutative Elliptic Curves

Conventions for remainder of talk
e k=C

e X is smooth elliptic curve (over k)

@ Coh X is category of coherent sheaves over X
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Classification of vector bundles over X (Atiyah (1957))

Let E(r,d) =set of iso. classes of indecomposable vector bundles
of rank r and degree d.
Theorem (Atiyah (1957))

For each r > 1 and each d € Z, E(r, d) is parameterized by the
points of X.

o A bundle £ in CohP! is simple if and only if £ is a line bundle.
@ A bundle &€ in E(r,d) is simple if and only if ged(r, d) = 1.

We will construct helices (of length 2 and 3) whose terms are
simple vector bundles over X (not nec. line bundles)
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cohproj

Let A be coherent connected Z-algebra and let
@ cohA = cat. of (graded right) coherent modules

o torsA = full subcat. of right-bounded modules.

Definition (Polishchuk (2005))
cohprojA := cohA/torsA

If A is noetherian, cohprojA = projA.
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Noncommutative elliptic curves (Polishchuk (2002))

Theorem (Polishchuk (2002))
For each § € R, 3 t-structure on D?(X) w/heart C? such that
e DP(C%) = D*(X),

o C? has cohomological dimension 1, and

e if 6 is irrational, then every nonzero object in C% is
nonnoetherian. )

Theorem (Polishshcuk (2002))

If £L=(Lj)iez is a sequence of simple bundles such that
w(Lpm) > 0 for all m and limy,—— oo p(Lm) = 6, then

cl = cohprojB,.
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Part 4

First Application: Maps to P},
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Piontkovski's noncommutative projective line P}

Theorem (Zhang (1998))

If Ais connected, gen. in degree 1 and regular of dim 2 then
A= k<X17 o0 7Xn>/<b>

where n > 2, b=>"", xjo(xp_it+1) and o € Aut k{(x1,...,Xn). If
n > 2, A is non-noetherian.

A\

Theorem (Piontkovski (2008))

n > 2 implies A is coherent. If P! := cohprojA, then P! depends
only on n. Furthermore, IP’% = CohP.
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Example: Maps from Elliptic Curves to Projective Lines

Double cover of P!

L = degree 2 line bundle over X.

@ L induces double cover
X 2 Proj [.(X, £) - Proj S(T(X, £)) = P

ramified at 4 points.

@ Pullback of Koszul complex over P! takes form

0 — L2 — Hom(Ox,L)® L7 — Ox — 0.

v
Goal

Look for interesting helices over C = CohX with the same "shape”
as this example.
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Kuleshov's Lemma (Kuleshov (1992))

Definition (Kuleshov (1992))

(€, F) is simple pair if £ and F are simple and exactly one of
Hom(&, F), Ext!(&, F) is nonzero.

Lemma (Kuleshov (1992))

Let & be a simple bundle. If

0—L—>VE&E —E —0

is exact, then TFAE:
Q (L£,&) is a simple pair and V = Hom(L, &)*.
Q (&1,&2) is a simple pair and V' = Hom(&1, £2).

Use Lemma to construct a helix starting from two simple bundles.
Will need £ 25" Hom(L, £)* ® £ to be injective.
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Modification of Kuleshov's Lemma

Injective pairs
A simple pair (€, F) of bundles is an injective pair if
Ext!(£,F) = 0 and every nonzero map £ — F is injective.

Lemma (Chan-N (2021))

Let (Lo, L1) be an injective pair of bundles such that
d :=dimHom(Ly, £1) > 1. Then the ses

0 — Lo = Hom(Lo, L1)* @ L1 — Lo — 0

defines an injective pair of bundles (L1, L7).

Construction of £

Start with Lo € E(1,0), £1 € E(1,d). Lemma gives (L;)i>0. Do
the same starting with the injective pair (L3, £§) and use duality
to get (£))i<o-

‘ \

Adam Nyman



Double covers of P}

Theorem (Chan-N. (2021))
Let d > 2, let Lo € E(1,0) and let £1 € E(1,d). Then
@ the pair (Lo, £1) extends to a unique helix £, on CohX

@ cohprojB;, = C%, where

0 _ 2d

T A2 JaE 4
© cohprojAz, =P, and
Q the map from Part 2

ProjBc, = ProjAc,

is a double cover.
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Part 5

Second Application: Noncommutative Nonnoetherian
P?’s
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Example: Maps from Elliptic Curves to Projective Planes

L = degree 3 line bundle over X, let V = Hom(Ox, £).

@ L induces closed immersion

X = Proj (X, £) -5 Proj S(F(X, £)) = P,

o Since A’V = V*, pullback of Koszul complex over P? takes
form

0 =L > VRL?2 S VeL—0x—0.

Look for interesting helices over C = CohX with the same "shape”
as this example.
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Helix construction: main idea

Find sequence L of objects in CohX with exact sequences like the
Koszul complex

0L 3—-VRL, »—->WRL_1—>L;—0 J

Start with three simple bundles (Lo, £7, £1). Construct a new
triple (L’l,ﬁ/z,/iz) as follows:

0— ,Co — Hom([,o, El)* X El — cok =: Elz -0
and
0— Ly - Hom(Ly,L£1)" ® L1 — cok =: L2 — 0

Would like:
@ above sequences to be exact,
o Lo, [,'2 simple bundles,
o L1 — Hom(L1, L2)* ® Ly and Ly — Hom(Ly, £2)* @ Lo to
be injections, etc.
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Helix construction: main idea (cont.)

If we can continue to the right, get exact sequences
0— Li_3 — Hom(Li_3,Li2)*® Li_y — L; 1 —0

and
0 L; 3 — Hom(L; 1, Li1)* ® Li_1 — L —0

which fit together to give

0L 3>VRL »,—>WRL 11— L;—0. J

where
o V =Hom(Li_3,Li-2)",
o W = Hom(ﬁ;_l,ﬁ,-_l)* >~ Hom(L;-1, L;).
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Definition of £

Theorem (Chan-N (2022))

Let d > 3 be an odd integer. Let Lo € E(1,0), £; € E(d,2) and
let £, € E(1,d). Then

Q the triple (Lo, £, £1) generates a helix

éd = (ci)iez

@ the Koszul complex of L is exact of length 3, and

© helices £; = Bondal-Polishchuk’s elliptic helices of period 3
over X.

Part 3 = we recover all three-dimensional elliptic Artin-Schelter
regular algebras over X when d = 3.
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Main Theorem

Theorem (Chan-N (2022))

Let d > 3 be an odd integer, and let £, denote a sequence of the
form above. Then

Q Ag, is 3-periodic, Koszul, has global dimension three, and is
Gorenstein (with Gorenstein parameter three),

Q dimi(Ag,)iiv1 = d for all J,

© A, and B, are nonnoetherian,

© the canonical map ¢ : Az, — B, is surjective,

© ¢ induces ProjB., = ProjA¢ ,

Q ProjBg, = C™, i.e. ProjB, is a noncommutative elliptic
curve.
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Key Tool

Theorem (Chan-N (2022))

If £ and F are simple bundles such that
o u(€) < u(F) and
@ rank F < rank & - dimHom(&, F),

then evaluation

Hom(E, F)® & = F

is surjective, and coevaluation

F* — Hom(F*, &) @ &*

is injective.
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Thank You!
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More on classification of indecomposable bundles over X

A bundle in E(1,1) induces
® : E(ged(r, d),0) = E(r, d).

Using ®, there exists a distinguished bundle &, 4 € E(r,d) and
every bundle in E(r,d) is

L® 5r,d

where £ € E(1,0).
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Classification

Let d >3 odd. Let Ay ® &1 € E(1,0), A} ® g € E(d,2),
A1 ® &4 € E(1,d).

What are the isomorphism classes of algebras of the form S"¢(L,)?

Rigidify triple by tensoring Ly by Aj. Thus, S"(L,) determined
by two degree zero line bundles.

Conjecture

The noncommutative symmetric algebra corresponding to (C1,C2)
is isomorphic to that corresponding to (D1, D>) if and only if 3 an
automorphism o of C™ such that o(C;) = D;.
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