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Abstract. We study non-commutative projective lines over not necessarily

algebraic bimodules. In particular, we give a complete description of their

categories of coherent sheaves and show they are derived equivalent to certain
bimodule species. This allows us to classify modules over these species and

thus generalize, and give a geometric interpretation for, results of C. Ringel

[22].

Throughout this paper, K,K0, and K1 denote fields of characteristic 6= 2.

1. Introduction

The theory of tilting bundles has grown remarkably over the last few decades,
connecting two otherwise unrelated fields of mathematics, algebraic geometry and
representation theory. The simplest example occurs with the projective line P1 =
P(K2) which is derived equivalent to the Kronecker algebra or species Λ =

(
K K2

0 K

)
.

Since both CohP1 and Λ are hereditary, this means that the indecomposable Λ-
modules are in bijective correspondence with indecomposable sheaves on P1. More
precisely, the indecomposable irregular modules correspond to the line bundles on
P1 whilst the regular modules correspond to the torsion sheaves.

In the 1970’s Dlab and Ringel [5], [22] studied generalizations of the Kronecker
algebra above where K2 is replaced by a K0 − K1-bimodule V which is constant
dimension two on each side (see Section 3). Corresponding bimodule generaliza-
tions Pnc(V ) of the projective line appeared much later with the work of Patrick
[19], Van den Bergh [24], and Nyman [17]. Here one defines a non-commutative
version of the symmetric algebra A = Snc(V ), which is a Z-indexed algebra closely
related to Dlab and Ringel’s preprojective algebra [6]. Using the non-commutative
projective geometry of Artin-Zhang [3], we may then define Pnc(V ) = ProjA to be
a certain quotient category of the category of graded A-modules (see Section 7).
However, most research to date has concentrated on the case where the bimodule
V is algebraic in the sense that there exists a common subfield k of K0 and K1

which acts centrally on V and Ki/k is finite. This hypothesis is usually included
because it guarantees Hom-finiteness and thus Serre duality.

The goal of this paper is to study non-commutative projective lines and bimod-
ule species without assuming the algebraic hypothesis. In particular, we will re-
interpret and extend classic results of Ringel [22] by exploring derived equivalences
between Pnc(V ) and the corresponding bimodule species

Λ =
(
K0 V
0 K1

)
.
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It seems that the non-commutative projective line is the more amenable object to
study and hence our point of view is that non-commutative projective geometry
provides a profitable way to study and understand bimodule species. This is partly
because many of the familiar notions of algebraic geometry (torsion, dimension,
Hilbert functions) extend to sheaves on Pnc(V ). For example, each unit ei ∈ Aii, i ∈
Z gives rise to a line bundle Ai which is the analogue of O(−i). We have the
following generalization of Grothendieck’s splitting theorem which recovers some
results in [5] and [6], and generalizes [17, Theorem 3.14].

Theorem 1.1. Any coherent sheaf on Pnc(V ) is a direct sum of a torsion free
sheaf with a torsion sheaf. Every torsion free sheaf is a direct sum of Ai. In
particular, the indecomposable irregular Λ-modules are induced by multiplication in
the non-commutative symmetric algebra and are of the form

Ai0 ⊗K V →Ai1 or A∗0i−2 ⊗K V →A∗1i−2.

It is in the study of regular Λ-modules or equivalently, torsion sheaves on Pnc(V ),
that non-commutative projective geometry seems to have something really new to
contribute, namely, the notion of a point scheme or commutative locus. We know
of no counterpart in the theory of finite dimensional algebras. In our context, this
corresponds to the fact that there is a naturally defined normal family of elements
g = {gi} ∈ Aii+δ where δ = 1 when V is non-simple and δ = 2 when V is simple.
Geometrically, we think of g = 0 as defining a closed subscheme of Pnc(V ) and its
complement as being affine open. This allows us to geometrically interpret the next
result.

Theorem 1.2. The category of regular Λ-modules and the category of torsion co-
herent sheaves on Pnc(V ) are both equivalent to the product category flA[g−1]00×T
where flA[g−1]00 is the category of finite length A[g−1]00-modules and T is uniserial.
The decomposition corresponds to the g-torsion free and g-torsion subcategories of
CohPnc(V ).

For V non-simple, this is an old result of Ringel’s [22, Section 7.4] and he states
quite explicitly that the simple case seems hard. Furthermore, the regular modules
in T can be “read off” the non-commutative symmetric algebra, just as in the com-
mutative case. There are also explicit descriptions of regular modules coresponding
to the finite length A[g−1]00-modules in Section 10.5.

In Section 2 we review Z-indexed algebras and localization theory for them. In
Section 3, we recall the definition of the non-commutative symmetric algebra from
[24] and establish the all important Euler exact sequence for them. In Section 4 we
construct the normal family of elements used in Theorem 1.2. Our construction is
suggested by the theory of non-commutative P1-bundles as developed in [24], but
is purely algebraic, in part because the geometric theory of point schemes does not
carry over naively to our case. Following standard methodology in non-commutative
projective geometry as introduced by Artin-Tate-Van den Bergh [2], we study A/(g)
to show that Snc(V ) is noetherian in Section 5. The non-commutative projective
line can be defined using the preprojective algebra Π(V ), but we prefer to use Snc(V )
for a number of reasons. Just like the preprojective algebra, it has good homological
properties being Auslander regular of dimension two (proved in Sections 6,8) and
also a domain. Furthermore, Π(V ) is in some sense a non-commutative 2-Veronese
of Snc(V ) (Proposition 7.5) so it is easier to recover the former from the latter. The
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homological properties of Snc(V ) allow us to conclude that CohPnc(V ) is hereditary
(Corollary 8.7), a result which enables us to identify the derived category with the
repetitive category. In Section 7 we compute the cohomology of line bundles on
Pnc(V ) and use this to invoke tilting theory to show Pnc(V ) and Λ are derived
equivalent. Although a Serre functor is out of the question, we do prove a version
of classical Serre duality in Section 9. Section 10 is devoted to classifying sheaves
on Pnc(V ) and Λ-modules. In particular, we prove Theorems 1.1 and 1.2 above.

2. Z-indexed algebras and torsion theory

In this section, we recall the notions of indexed algebras and indexed analogues
of various ring theoretic concepts such as localization and bimodules.

Let I be a set of indices. Recall (from [25, Section 2]) that an I-indexed al-
gebra D is a pre-additive category whose objects are indexed by I and denoted
(for reasons given below) {O(−i)}i∈I , and whose morphisms are denoted Dij :=
Hom(O(−j),O(−i)). If the category is in fact k-linear for some field k, then we
say D is an I-indexed k-algebra. We will often abuse terminology and call the ring
D = ⊕i,jDij with multiplication given by composition an I-indexed algebra. The
case we are most interested in is I = Z. We let ei denote the identity in Dii. We
note that in the literature, Z-indexed algebras are more often called Z-algebras.

The example to keep in mind comes from projective geometry. Let X be the
projective line, or more generally any projective variety embedded in projective
space, let I = Z, and let O(i) denote the i-th tensor powers of the tautological line
bundle. Then Dij = HomOX (O(−j),O(−i)).

In the indexed setting, unlike the graded one, all objects are graded and it is
unnatural to form ungraded versions. For example, let D be an I-indexed algebra.
A (graded) right D-module is a graded abelian group M = ⊕i∈IMi with multipli-
cation maps Mi ×Dij→Mj satisfying the usual module axioms (see [25] for more
details). We let GrD denote the category of graded right D-modules and we let
D − Gr denote the category of graded left D-modules.

As for rings, one way to see the symmetry between left and right modules is to
introduce the opposite algebra Dop which is just the opposite category. Then left
D-modules correspond to right Dop-modules in the usual way.

Let Dij be a Z-indexed algebra. We say that it is a domain if i) for all i, j and
non-zero a ∈ Dij , we have that a is a non-zero-divisor, i.e. if b ∈ Djl, c ∈ Dhi is
non-zero, then ab, ca 6= 0, and ii) Dii+1 6= 0. The second condition will become
clear when we construct the indexed ring of fractions.

As noted in [21], the theory of Ore sets and Ore localization works fine for Z-
indexed algebras (recall that the construction of the derived category by inverting
quasi-isomorphisms is such a general case of localization). As usual, a D-module is
uniform if any two non-zero submodules have non-zero intersection, or equivalently,
any non-zero submodule is essential. Our analogue of the ring of fractions is given
in the next result.

Proposition 2.1. Let D be a domain such that eiD is uniform for every i. Then
the set of non-zero elements forms a right Ore set. Inverting these elements gives
a Z-indexed algebra Q which we call the (right) ring of fractions.

Remark Actually, we may weaken the hypotheses on eiD to only assume they all
have the same Goldie rank. We will not need this result.
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Proof. Suppose ais ∈ Dis, xir ∈ Dir\{0}. We need to find a non-zero y ∈ esD and
b ∈ erD such that aisy = xirb. If ais = 0 we need only set b = 0 (with y arbitrary)
whilst if ais 6= 0 then the result follows as aisesD,xirerD are non-zero submodules
of the uniform module eiD. �

If the hypotheses of the proposition hold, we say D has a right ring of fractions.
If also all the Dei are uniform left modules, then we say D has a ring of fractions.
Rings of fractions have the usual nice properties.

Proposition 2.2. Suppose D has a right ring of fractions Q.

(1) The Qii are isomorphic division rings and Qij is a Qii−Qjj-bimodule which
is 1-dimensional on each side and hence gives a Morita equivalence between
Qii and Qjj.

(2) Let M be a right Q-module. Then we have an isomorphism of Q-modules
φ : M0 ⊗Q00 e0Q→M given by multiplication M0 ⊗Q00 Q0j→Mj.

Proof. As in the previous proof, this one follows the usual ring theory proof so we
only mention how condition ii) in our definition of a domain enters the picture.
Note that since D is a domain, we have Dij 6= 0 if i < j. Given any non-zero
element dij ∈ Dij , conjugation by dij gives an isomorphism of Dii with Djj . �

We will need the following definition, from [15, Section 3].

Definition 2.3. Let D be an I-indexed algebra. We let BimodD − D denote the
category of D −D-bimodules. Specifically:

• an object of BimodD −D is a triple

(B = {Bij}i,j∈I , {µijk}i,j,k∈I , {ψijk}i,j,k∈I)
where Bij is an abelian group and µijk : Bij ⊗ Djk → Bik and ψijk :
Dij ⊗Bjk → Bik are group homomorphisms making B a D-D bimodule.

• A morphism φ : B → C between objects in BimodD − D is a collection
φ = {φij}i,j∈I such that φij : Bij → Dij is a group homomorphism, and
such that φ respects the D −D-bimodule structure on B and C.

As usual, these can be studied via an appropriate definition of an enveloping
algebra, as follows. Let DI be an I-indexed k-algebra and DH be an H-indexed
k-algebra. We define an I ×H-indexed k-algebra DI ⊗k DH by

(DI ⊗k DH)(i,h)(i′,h′) := DI,ii′ ⊗k DH,hh′ .

If D is a Z-indexed k-algebra, then the enveloping algebra Dop⊗kD is a Z2-indexed
algebra and D −D-bimodules are just right Dop ⊗k D-modules.

For each h ∈ I, there is a natural restriction functor resh : BimodD−D→GrD
defined by B 7→ ehB and similarly for left modules. There is an exact left adjoint
Deh⊗k− which sends the D-module M to the bimodule defined by (Deh⊗kM)ij =
Dih ⊗k Mj . In particular, we see that if I is an injective D − D-bimodule, then
Ieh, ehI are injective left and right D-modules.

Given a right D-module M and D − D-bimodule B, we can form the tensor
product M ⊗DB (see [15, Defintion 3.2]) which is again a right D-module, and this
is functorial in M and B (a similar construction holds for left modules). Assume
now that D has a ring of fractions Q, which we can also view as a D−D-bimodule.
The natural inclusion map D→Q induces a localization map λM : M→M ⊗D Q.
If M is a noetherian right D-module, we say M is torsion if M ⊗D Q = 0 and
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torsion-free if λM is injective. Standard arguments using exactness of localization
give the following result.

Proposition 2.4. (1) σM := kerλM is torsion and contains every torsion
submodule of M . It is called the torsion submodule of M .

(2) M/σM is torsion-free.

We need one more standard localization result in the Z-indexed setting.

Proposition 2.5. Let M be a finitely generated torsion-free right D-module. Then
there is an embedding φ : M→(eiD)⊕n for some i, n such that cokerφ is torsion.

Proof. Note first thatM⊗DQ is finitely generated as aQ-module so by the structure
theory of Proposition 2.2 it is isomorphic to (e0Q)n for some integer n. We may
thus assume that M is a submodule of (e0Q)n and hence write elements of M as
n-tuples of left fractions. We wish to find a common left denominator ai0 ∈ Di0

for all the elements in M , for then ai0M ⊆ (eiD)n and since D is a domain, left
multiplication by ai0 gives the desired embedding φ.

Now M is finitely generated, so we need only show that any two elements of
e0Q have a common denominator, or equivalently, any two such denominators
xr0 ∈ Dr0, ys0 ∈ Ds0 have a common left multiple. Derxr0 ∩ Desys0 is a non-
zero submodule of the uniform module De0 so we are done. Note that φ ⊗D Q is
an isomorphism so cokerφ is indeed torsion. �

3. Two-sided vector spaces and non-commutative symmetric algebras

In this section, we recall basic definitions and facts regarding two-sided vector
spaces and non-commutative symmetric algebras. We then establish the Euler exact
sequence in the not necessarily algebraic case.

3.1. Two-sided vector spaces. By a two-sided vector space we mean a K0−K1-
bimodule V . If V 6= 0, then the characteristic field of both K0 and K1 are the same
and acts centrally on V . In general, we use the symbol k to denote any common
subfield of K0,K1 which acts centrally on V . If a central subfield k can be chosen
so that Ki/k is a finite separable extension, then following Ringel [22], we say that
V is an algebraic bimodule. We say V has rank n if dimK0(V ) = dimK1(V ) = n.

In order to describe the next result classifying rank two two-sided vector spaces,
we introduce some notation. If Mn(K0) denotes the ring of n × n matrices over
K0 and φ : K1 →Mn(K0) is a nonzero homomorphism, then we denote by Kn

φ the
two-sided vector space whose underlying set is Kn

0 , whose left action is the usual
one, and whose right action is via φ.

We have the following variant of [19, Theorem 1.3]

Lemma 3.1. Suppose V has rank two.

(1) If V is non-simple, then K := K0
∼= K1. Considering V as a K − K-

bimodule, we have

(a) V ∼= K2
φ where φ(a) =

(
σ(a) 0

0 τ(a)

)
and σ, τ ∈ Aut(K), or

(b) V ∼= K2
φ where φ(a) =

(
σ(a) δ(a)

0 σ(a)

)
, σ(a) ∈ Aut(K), and δ is a

(σ, σ)-derivation.
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(2) If V is simple, then there exists a degree two field extension F of K0 and K1

such that V is isomorphic to the two-sided vector space 0F1 with underlying
additive group F and left and right actions induced by the field embeddings
of ι0 : K0→F and ι1 : K1→F , respectively.

Proof. If V is non-simple, then V has a submodule W which is one-dimensional on
the right and left. It follows that K0

∼= K1, whence the first assertion. The second
assertion follows from [19, Theorem 1.3].

Let k be the common characteristic field of K0 and K1. If V is a simple K0⊗kK1-
module, there exists a maximal ideal J of K0⊗kK1 such that V ∼= K0⊗kK1/J := F .
The result follows. �

Several of our results will be proven on a case by case basis depending on the
structure of V according to Lemma 3.1.

We also need to recall from [24], the notion of left and right dual of a two-
sided vector space. The right dual of V , denoted V ∗, is the K1 − K0-bimodule
HomK1(VK1 ,K1) with action (a ·ψ ·b)(v) = aψ(bv) for all ψ ∈ HomK1(VK1 ,K1) and
a ∈ K1, b ∈ K0. Similarly, the left dual of V , denoted ∗V , is the K0−K1-bimodule
HomK0

(K0
V,K0) with action (a · φ · b)(v) = bφ(va) for all φ ∈ HomK0

(K0
V,K0)

and a ∈ K1, b ∈ K0. The left and right duals of two-sided vector spaces are clearly
functorial.

In case V is simple of rank two, these duals are easily computed. To this end, we
fix some useful notation. Let ι0 : K0→F, ι1 : K1→F be field homomorphisms such
that [F : ιj(Kj)] = 2 for j = 0, 1. We let σj be the Galois involution generating
the Galois group of F/ιj(Kj). Note that the maps ι0, ι1 make F both a K0 −K1-
bimodule and a K1−K0-bimodule. We will use the symbols 0F1 and 1F0 to denote
these bimodules. There is a (reduced) trace map

trj : F →Kj : a 7→ ι−1
j

(
1

2
(a+ σj(a))

)
.

The proof of the following lemma is immediate.

Lemma 3.2. With the above notation, the trace map gives a non-degenerate trace
pairing and hence an isomorphism of K1−K0-bimodules 0F

∗
1 := HomK1(0F1,K1) ∼=

1F0. Explicitly, this is

1F0
∼−→ 0F

∗
1 : a 7→ [b 7→ tr1(ba)].

We similarly also have a bimodule isomorphism

1F0
∼−→ ∗

0F1 : a 7→ [b 7→ tr0(ab)].

3.2. Non-commutative symmetric algebras. It will be useful to introduce the
following notation.

Notation 3.3. For i ∈ Z, we let Ki = K0 if i is even and Ki = K1 if i is odd. We
will often drop the subscript if it is clear from the context. Furthermore, when V is
non-simple so K0

∼= K1 by Lemma 3.1, we fix such an isomorphism and so identify
K0 = K1 = K.

Given a two-sided vector space V , we set

V i∗ :=


V if i = 0,

(V (i−1)∗)∗ if i > 0,
∗(V (i+1)∗) if i < 0.
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This is a Ki−Ki+1-bimodule, which given our convention above, we will sometimes
refer to as just a K −K-bimodule.

Lemma 3.4. If V has rank two, then V i∗ has rank two for all i and there is an
isomorphism V → V ∗∗.

Proof. If V is non-simple, the assertions follow from the formula for left and right
dual appearing in [22, Section 6.4].

If V is simple, this follows from Lemma 3.1 and Lemma 3.2. �

There is a natural isomorphism EndKi+1
(V i∗) ∼= V i∗ ⊗ V (i+1)∗. Furthermore,

since V i∗ is a K−K-bimodule, there is a ring homomorphism Ki→EndKi+1
(V i∗).

Combining these gives a K − K-bimodule morphism Ki → V i∗ ⊗ V (i+1)∗. We
sometimes denote the image of this map by Qi.

As in the graded case, to define the symmetric algebra, we first define the tensor
algebra. This is the Z-indexed algebra T = ⊕Tij with

• Tij = 0 if i > j,
• Tii = Ki,
• and freely generated by Tii+1 = V i∗,

In other words,

Tij = Tii+1 ⊗ Ti+1i+2 ⊗ · · · ⊗ Tj−1j .

We recall (from [24]) that the non-commutative symmetric algebra of V , is the
quotient Z-indexed algebra Snc(V ) = Tij/Rij where Rij is the ideal generated by
Qi, . . . , Qj−2 if j ≥ i+ 2 or is zero otherwise. In the sequel, the ring Snc(V ) will be
denoted by A.

In the sequel, we will assume V has rank two. The study of Snc(V ) in case V is
an algebraic bimodule with dimK0

(V ) = 1 and dimK1
(V ) = 4 is carried out in [14]

and [18].
We will routinely identify A with the Z-indexed algebra generated by V and V ∗

in bidegrees (i, i+ 1) with i even and odd respectively, and with relations induced
by Q0 and Q1. This follows from a routine computation using Lemma 3.4, [17,
Lemma 2.4] and [14, Lemma 2.1].

3.3. The Euler exact sequence. Below we use the following notation, which
is valid in light of Lemma 3.4. We pick a two-sided basis {x, y} for V j∗ and let
{x∗, y∗} ∈ V j+1∗ be the dual left basis and {∗x,∗ y} ∈ V j−1∗ be the dual right
basis. Hence Qj is generated on the left or right by x ⊗ x∗ + y ⊗ y∗ and similarly
for Qj−1. As in Section 3.2, we let T denote the tensor Z-indexed algebra on V
and A = Snc(V ) = T/R.

The next result shows that the elements of V j∗ are non-zero-divisors.

Lemma 3.5. Let 0 6= x ∈ V j∗, a ∈ Tij be such that a⊗ x ∈ Rij+1. Then a ∈ Rij.

Proof. We argue by induction on j − i, the case j − i = 1 being clear. Since
Rij+1 = Rij ⊗ V j∗ + Tij−1 ⊗Qj−1, we may find b ∈ Tij−1 such that

a⊗ x− b⊗ ( ∗x⊗ x+ ∗y ⊗ y) = (a− b⊗ ∗x)⊗ x− b⊗ ∗y ⊗ y ∈ Rij ⊗ V j∗.

In particular, we see that both b ⊗ ∗y, a− b ⊗ ∗x ∈ R. By induction, we see then
that b lies in R and hence so does a. �

We now prove the existence of the Euler exact sequence.
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Lemma 3.6. (1) The following equality holds,

Rij+1 ⊗ V j+1∗ ∩ Tij ⊗Qj = Rij ⊗Qj .

(2) There is the following exact sequence

0→ Aij ⊗Qj → Aij+1 ⊗ V j+1∗ → Aij+2 → 0.

In particular, the left and right dimensions of Aij equals j− i+ 1 for j ≥ i.
(3) Furthermore, there is an exact sequence of left A-modules

0→Aej→(Aej+1)⊕2→Aej+2→Aj+2,j+2→ 0.

Proof. Note that (2) =⇒ (3) since it shows exactness in degrees i ≤ j, whilst
exactness in degrees i > j is immediately checked from the definition of A. Note
also that by definition of A, the sequence in part (2) is a complex which is exact
everywhere except possibly the Aij ⊗Qj term. Exactness there is equivalent to the
statement in (1), so we are reduced to proving (1).

We consider an element of the intersection on the left hand side of (1), which
can be written as c⊗ (x⊗ x∗ + y ⊗ y∗) for some c ∈ Tij . It can also be written in
the form

(3-1) c⊗ (x⊗ x∗ + y ⊗ y∗) = (a⊗ x∗ + a′ ⊗ y∗) + (b⊗ x∗ + b′ ⊗ y∗)

where a, a′ ∈ Rij ⊗ V j∗, b, b′ ∈ Tij−1 ⊗Qj−1. We write

b = b′′ ⊗ (∗x⊗ x+∗ y ⊗ y), b′ = b′′′ ⊗ (∗x⊗ x+∗ y ⊗ y)

Substituting back into (3-1), we find that

Rij ⊗ V j∗ 3 a = (c− b′′ ⊗ ∗x)⊗ x− b′′ ⊗ ∗y ⊗ y.

This shows that b′′⊗ ∗y ∈ R so b′′ ∈ R by lemma 3.5. We also see that c−b′′⊗∗x ∈ R
so c ∈ R too. It follows that c ⊗ (x ⊗ x∗ + y ⊗ y∗) ∈ Rij ⊗ Qj and the lemma is
proved. �

4. Normal elements in A

In [24], M. Van den Bergh proves that if X and Y are smooth schemes of finite
type over a field k, the category of graded right modules over the non-commutative
symmetric algebra of a k-central rank two OX − OY -bimodule is noetherian (D.
Presotto and Louis de Thanhoffer de Völcsey prove a similar result in case the
bimodule has left rank four and right rank one [20]). The key notion in Van den
Bergh’s paper is the point scheme which is obtained by geometric means and un-
available in our setting. Using the point scheme, he constructs a “projectively
commutative” quotient algebra, namely the twisted homogeneous co-ordinate ring,
from which he deduces the ascending chain condition for the non-commutative sym-
metric algebra. In this section, we show that in our setting this quotient still exists
by proving algebraically that the non-commutative symmetrical algebra of a rank
two two-sided vector space has a family of normal elements.

Let D be a Z-indexed algebra. A normal family of elements g = {gi} of degree
δ consists of gi ∈ Di,i+δ, i ∈ Z such that giDi+δ,j+δ = Dijgj for all i, j ∈ Z. We let
(g) be the ideal generated by the family.

As usual, we let V be a rank two two-sided vector space, A = Snc(V ), and we
routinely use the notation in Section 3.
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4.1. Case 1: V is simple. We retain the notation from Lemma 3.1 so V = 0F1.
Pick wj ∈ F so that w2

j ∈ ιj(Kj) but wj is not in ιj(Kj). Multiplying wj by the
appropriate element of ιj(Kj), we may also assume that wj is not in either ι0(K0)
or ι1(K1).

Since F/ι1(K1) is Galois, T02( 0F1) := 0F1 ⊗ 0F
∗
1 = 0F1 ⊗ 1F0 = F ⊗K1 F

can be considered a K1-algebra and as such it is isomorphic to 〈σ1〉 × F ∼= F × F .
Furthermore, 0F1 ⊗ 0F

∗
1 is also an F -bimodule (since F ⊗K1

F is) and as such
decomposes as 0F1 ⊗ 0F

∗
1 = Fid ⊕ Fσ1

. We examine the component Fid below.
Using Lemma 3.2, we see that Q0 ⊂ 0F1 ⊗ 1F0 is the K0-central subbimodule
generated by the canonical element h1 := 1⊗ 1 + w−1

1 ⊗ w1.

Lemma 4.1. (1) FQ0 = Q0F so is an F -subbimodule of 0F1 ⊗ 1F0.
(2) FQ0 is F -central.
(3) {h1, g1 := w1h1 = w1⊗1+1⊗w1} is a simultaneous left and right K0-basis

for FQ0.

Proof. For a ∈ F , all statements will follows if we can show that ah1 = h1a. To
this end, we write a = a′ + a′′w1 where a′, a′′ ∈ ι1(K1). Then

a(1⊗ 1 + w−1
1 ⊗ w1) = a′ ⊗ 1 + a′′w1 ⊗ 1 + a′w−1

1 ⊗ w1 + a′′ ⊗ w1.

Similarly,

(1⊗ 1 + w−1
1 ⊗ w1)a = 1⊗ a′ + a′′ ⊗ w1 + a′w−1

1 ⊗ w1 + a′′w−1
1 ⊗ w2

1.

The lemma follows since w2
1 ∈ ι1(K1) commutes through the tensor. �

Define h0 := 1⊗1+w−1
0 ⊗w0, g0 = w0h0 which forms a K1-basis for FQ1 = Q1F .

Lemma 4.2. Given a⊗ b ∈ 0F1 ⊗ 1F0 we have

a⊗ b ≡ aσ1(b)⊗ 1 mod FQ0.

Proof. We write a = a′ + a′′w1, b = b′ + b′′w1 with a′, a′′, b′, b′′ ∈ ι1(K1). Then

a⊗ b = a⊗ b′ + a′ ⊗ b′′w1 + a′′w1 ⊗ b′′w1

≡ ab′ ⊗ 1− a′b′′w1 ⊗ 1− a′′b′′w2
1 ⊗ 1 mod FQ0

= a(b′ − b′′w1)⊗ 1

�

Proposition 4.3. The images g0, g1 of g0, g1 in A form a normal pair in the sense
that given a ∈ F there exists b ∈ F such that g1a = bg0.

Proof. We analyze the equation in the triple tensor product 0F1 ⊗ 1F0 ⊗ 0F1. It
suffices to show that in this product, g1 ⊗ a lies in

F ⊗ g0 + F ⊗Q1 +Q0 ⊗ F = F ⊗ FQ1 +Q0 ⊗ F.
Using Lemma 4.2 we find

g1 ⊗ a ≡ g1w
−1
1 w1σ0(a)⊗ 1 mod F ⊗ FQ1

≡ h1 ⊗ σ−1
0 (w1)a mod F ⊗ FQ1

∈ Q0 ⊗ F
�

For i ∈ Z, we will abuse notation and write gi ∈ A for gī where ī is the residue
of i modulo 2.
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4.2. Case 2: V non-simple. By Lemma 3.1, we know that in this case K = K0
∼=

K1. Furthermore, we do not change the isomorphism class of A by considering V as
a K −K-bimodule. Thus, we may assume without loss of generality that K0 = K1

and, in the notation of Lemma 3.1, that V = K2
φ where φ is defined in cases (1a)

and (1b) of the lemma. We let x = (1, 0), y = (0, 1), and we let x∗ and y∗ be a
dual left basis for V ∗. Then the bimodules generated by y and x∗ are invertible
bimodules. Therefore, since y∗y = −x∗x and yy∗ = −xx∗ in A, the elements

gi =

{
y ∈ Aii+1 for i even, and

x∗ ∈ Aii+1 for i odd.

forms a normal family of degree one.
We summarise our results in the two cases below.

Proposition 4.4. The family of elements g = {gi} is normal of degree 2 if V is
simple and of degree 1 if V is non-simple.

We remark that in the non-simple case, g2 = {gigi+1} is also a normal family of
degree 2. In Van den Bergh’s setup, this is the more natural element to consider.

5. The twisted ring A/(g)

In this section, we analyze the quotient algebra A/(g) where g is the normal
family of elements obtained in the previous section. We show it is the analogue of
the twisted homogeneous co-ordinate ring studied in the theory of non-commutative
P1-bundles [24] and in particular is noetherian. This in turn allows us to apply the
Hilbert basis theorem [24, Lemma 3.2.2] to show that A is noetherian.

We first define the notion of a twisted ring in the context of Z-indexed algebras.
Let F be a field and σi ∈ AutF, i ∈ Z. We will sometimes refer to the σi as twisting
automorphisms. We define the full twisted ring on F to be the Z-indexed algebra
C = C(F ;σ) with Cij = F and multiplication mijk : Cij ⊗F Cjk→Cik defined by

(5-1) mijk(a⊗ b) =

{
aσi+1σi+2 . . . σj(b) if i ≤ j
aσ−1

i σ−1
i−1 . . . σ

−1
j+1(b) if i > j

Now F is noetherian, so this strongly graded ring is also (left and right) noetherian
by [24, Lemma 3.2.3]. A twisted ring (on F ) is any subring B which equals C in
sufficiently large degree, that is, there exists d ∈ N such that Bij = Cij whenever
j − i ≥ d.

[24, Lemma 3.2.1] gives the following result.

Proposition 5.1. C≥0 is noetherian.

We consider again our usual setting of a rank two two-sided vector space V and
the non-commuative symmetric algebra A = Snc(V ). Following Van den Bergh [24,
Section 6.3, Step 9], we let I ⊂ A be the ideal generated by the g. More precisely,
for i ∈ Z, we let Iii+2 ⊂ Aii+2 denote the K-sub-bimodule generated by gi. For
j ≥ i+2, Iij is the image of Aij−2⊗Ij−2j in Aij under multiplication by Proposition
4.4.

We come to our first major result.

Theorem 5.2. A/I is a twisted ring on F if V is simple and a twisted ring on K,
if V is non-simple. Furthermore, A is noetherian.
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The proof divides into the two cases and will be completed in the following two
subsections.

5.1. Proof case 1: V simple. We retain the notation from Section 4.1 so V =

0F1. We wish to show that the gi are non-zero-divisors of A and compute the
quotient A/I. We first note the following.

Lemma 5.3. Let j > i. The natural F -bimodule structure on Tij induces an
F -bimodule structure on (A/I)ij.

Proof. Let J be the ideal of T corresponding to I so T/J ' A/I. Note that Jii+2

is an F -bimodule by Lemma 4.1. Now J is the ideal of T generated by the Jii+2

so we are done. �

Lemma 5.4. For i < j, F ⊗1⊗ . . .⊗1 is a left Ki-space complement to Iij in Aij.
In particular, the left and right F -dimension of (A/I)ij is 1.

Proof. Note that Iij 6= Aij since the left Ki-dimension of Iij is at most that of
Aij−2. Lemma 4.2 and induction shows that every element of Aij is congruent
modulo I to one of the form a⊗ 1⊗ . . .⊗ 1. Hence the natural map

F ⊗ 1⊗ . . .⊗ 1→ (A/I)ij

is surjective. It must be injective as it is left F -linear and the left hand side has
F -dimension 1 while the right hand side has dimension at least one. The lemma
now follows. �

This lemma and Lemma 4.2 completely describes the quotient algebra A/I for
given positive degree elements a ⊗ 1 ⊗ . . . ⊗ 1 ∈ Aij , b ⊗ 1 ⊗ . . . ⊗ 1 ∈ Ajl, their
product is congruent modulo I to aσj−i(b)⊗1⊗ . . .⊗1 where σj−i is the alternating
product of j − i σ0’s and σ1’s, the right most one being σ0 if j is even, and σ1 if
j is odd. In other words, A/I is a twisted ring on F and it is in fact a domain
whose ring of quotients is the corresponding full twisted ring defined above. This
establishes the first assertion in Theorem 5.2 when V is simple.

Lemma 5.4 also gives the following result.

Proposition 5.5. Left and right multiplication by gi are monomorphisms.

Proof. We let dim denotes leftKi-dimension. Recall from Lemma 3.6 that dimAij =
j − i+ 1. Then Lemma 5.4 gives

dimAijgj = dimAij+2 − 2 = dimAij

so right multiplication by gj must be injective. A symmetric argument gives the
case of left multiplication. �

Note that (A/I)ii = Ki and A/I equals the full twisted ring in positive degrees.
It follows from Proposition 5.1 that A/I is noetherian. Now Proposition 5.5 and
the standard Hilbert basis argument show that A is noetherian. This completes
the proof of the theorem when V is simple.
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5.2. Proof case 2: V non-simple. We retain the notation from Section 4.2. Thus
Iii+1 is the K-bimodule generated by y for i even and x∗ for i odd. Therefore,
if j > i, then (A/I)ij is spanned by the image of a single simple tensor whose
components consist of alternating x’s and y∗’s. In particular, the right and left
K-dimension of (A/I)ij is ≤ 1. We next note that since the sequence

Aij ⊗ Ijj+1 → Aij+1 → (A/I)ij+1 → 0

whose left map is induced by multiplication is exact, the right and left dimension
of (A/I)ij+1 is ≥ 1. Therefore, it must equal one, which implies that the left map
is monic. It follows that left and right multiplication by y or x∗ is monic, and that
A/I is a twisted ring on K. The twisting automorphisms are, in the notation of
Lemma 3.1(1a) respectively (1b), τ or σ−1 depending on parity respectively σ or
σ−1 depending on parity. In fact, A/I equals the full twisted ring in non-negative
degrees so is noetherian by Proposition 5.1. Once again, it follows from the Hilbert
basis theorem that A is noetherian too. The proof of Theorem 5.2 is now complete.

6. A is a domain with global dimension 2

In this section, we show that A has global dimension two. This allows us to
show that the Gelfand-Kirillov dimension is particularly nice and we have a theory
of Hilbert polynomials. We then show that A is a domain, generalizing [17, Theorem
3.7].

Let D be a Z-indexed algebra. We say that D is connected if Dij = 0 whenever
i > j and all the Dii are fields. We assume further that D is noetherian. In this
section and the next, we let D̄ be the D-bimodule D/D≥1 = ⊕Dii. Many results
which are true for connected graded noetherian algebras are true for connected
indexed noetherian algebras too. We will not of course re-write the proofs of all
these extensions, but hopefully demonstrate enough that the reader is aware of
the main differences between the two theories, and can easily verify all unproved
assertions by comparing with standard graded proofs.

The graded version of Nakayama’s lemma holds for D-modules: if M is a left
bounded D-module and M ⊗ D̄ = 0 then M = 0. This applies in particular to any
noetherian module. By right exactness of ⊗, if M is noetherian and φ : P →M is a
homomorphism such that P ⊗D̄→M⊗D̄ is surjective, then φ is surjective too. We
may thus talk about minimal projective covers and minimal projective resolutions
of a noetherian module.

Proposition 6.1. The global dimension of A is 2.

Proof. We show how the standard graded proof goes through. First note that
a noetherian module M is projective if and only if TorA1 (M, Ā) = 0. Indeed if

TorA1 (M, Ā) = 0, we form the exact sequence

0→N→P
φ−→M→ 0

with φ a minimal projective cover. Tensoring with Ā shows that N ⊗ Ā = 0 so N
is zero too.

Consider the projective resolution of the left A-module Aj+2,j+2 given by the
Euler exact sequence (Lemma 3.6(3)). Since the resolution has length 2, we see

TorA3 (−, Ā) = 0 and given any noetherian right module M , the long exact sequence
for Tor shows that its second syzygy must be projective. The proof for left modules
uses the right hand version of 3.6. �
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By Proposition 6.1, any noetherian object M ∈ GrA has a finite resolution by a
finite direct sum of ejA, so exactness of the dimension function and Lemma 3.6(2)
ensures that fM (n) := dimKnMn is eventually of the form cn + d, with c, d ∈ Z
and c ≥ 0. If c 6= 0 then we say c is the multiplicity of M , and otherwise d
is the multiplicity of M . Following usual conventions for defining the Gelfand-
Kirillov dimension, we will look at the partial sums

∑n
i=−∞ fM (i) which is also

eventually a polynomial which we denote by hM (n). We define dimM = deg hM .
Of course, dimM = deg fM + 1 so long as M is not eventually zero. As usual,
given an exact sequence of noetherian modules 0→M ′→M→M ′′→ 0, we have
dimM = max{dimM ′,dimM ′′}.

We say that a noetherian module M is critical (with respect to dim) if for every
non-zero submodule N < M , we have dimM/N < dimM . We say that it is d-pure
(with respect to dim) if dimM = d and dimN < d for all N < M .

We can now show A is a domain.

Theorem 6.2. (1) eiA is 2-pure, critical and uniform.
(2) A is a domain.

In particular, by Proposition 2.1, A has a ring of fractions.

Proof. (Following [17, Theorem 3.7].) Note dim eiA = 2 and let Ji < eiA be the
sum of all submodules of dimension ≤ 1. Since dim aijJj ≤ dim Jj for any a ∈ Aij ,
we have that J := ⊕iJi is an ideal of A with Jij = (Ji)j .

We first note that the conclusions of the theorem hold if A is replaced with
A/J . Indeed, ej(A/J) is 2-pure by definition of J and exactness of dim. Hence
any non-zero submodule N of ej(A/J) must be 2-dimensional with multiplicity at
least 1. However, ejA has multiplicity 1 so the dimension of (ej A/J)/N must be at
most 1. Hence ej(A/J) is critical. It is also uniform, for given two distinct non-zero
submodules with zero intersection, their sum must be a submodule with multiplicity
at least 2, a contradiction. We finally show that any non-zero aij + Jij ∈ Aij/Jij
is a non-zero-divisor. Let φ : ej(A/J)→ ei(A/J) be left multiplication by aij . It
is non-zero as aijej /∈ J and thus injective since ej(A/J) is critical and ei(A/J) is
pure.

It thus remains to show that J = 0. Unlike in [17], we will need to distinguish
the left and right vector space dimensions of a Ki − Kj-bimodule, so we use the
notation l.dimK , r.dimK for these respectively.

Lemma 6.3. The left A-module Jei has dimension ≤ 1.

Proof. We in fact show that the left dimensions l.dimK Jij are bounded. We first
consider J0 = e0J which has dimension ≤ 1 say with multiplicity d. We pick j0
large enough so r. dimK J0j = d for all j ≥ j0. Let gj ∈ Aj,j+δ be the normal
element constructed in Section 4. Then right multiplication by gj : J0j→ J0j+δ

is both left K-linear and, by normality, skew right K-linear. Since it is injective
(Proposition 5.5) and the right dimensions are the same, it must be bijective. It
follows that l.dimK J0j = l.dimK J0j+δ. Furthermore, we see that the left dimen-
sions l.dimK J0j , j ≥ j0 are bounded, say by d′. Increasing j0, d

′ if necessary, we
may further assume that l.dimK J1j ≤ d′ for j ≥ j0.

We now show that l.dimK Jij ≤ d′ for all i, j. Let A(2) denote the Z-indexed
algebra which is A re-indexed so that A(2)ij = Ai+2,j+2. Then the right double
dual gives an isomorphism A ' A(2). In particular, we see that Jij ' Ji+2,j+2

as K −K-bimodules. Hence l.dimK Jij ≤ d′ so long as j − i ≥ j0. However, the
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non-zero elements of Aj−1,j are non-zero-divisors by Lemma 3.5 so l.dimK Jij−1 ≤
l.dimK Jij and we see l.dimK Jij ≤ d′ for all i, j. �

We now finish the proof of the theorem by showing Ji = 0. Let L < Aei be its
left annihilator. Let a1, . . . , am be a finite set of homogeneous generators for Ji,
Ls be their left annihilators and ds be their degrees. Then we have the following
inequality of left module dimensions

dimAei/L ≤ dim⊕ms=1Aei/Ls = max
s
{dimAas} ≤ max

s
{dim Jeds} ≤ 1.

Hence dimL = dimAei = 2 and by the lemma, we can find some h ∈ Z and ah ∈ Lh
such that ah /∈ J . Now A/J is a domain and left multiplication by ah annihilates
Ji so we have an exact sequence

0→ Ji→ eiA
ah−→ ehA→ ehA/aheiA→ 0.

It follows that Ji is a second syzygy and since gl.dimA = 2, it must be projective.
However, the only projective module of dimension ≤ 1 is 0. �

7. Cohomology of Pnc(V ) and bimodule species

In this section, we introduce the non-commutative projective line Pnc(V ), defined
via Artin-Zhang’s theory of non-commutative projective geometry [3]. We then
compute the cohomology of line bundles over Pnc(V ). This will give us the classical
Serre vanishing result, and allow us to find a tilting bundle on Pnc(V ). In particular,
we obtain our desired derived equivalence between Pnc(V ) and bimodule species.
We will also show how Pnc(V ) gives rise to the Dlab and Ringel’s preprojective
algebra Π(V ).

We now introduce notation that will be in effect for the remainder of this paper.
Let D be a Z-indexed or graded algebra. We say a D-module is graded torsion if it
is the direct limit of right bounded modules. Following Artin-Zhang we let ProjD
denote the quotient category GrD/TorsD where TorsD denotes the full subcategory
of GrD consisting of graded torsion modules. In case A = Snc(V ) we write Pnc(V )
for ProjA. Objects of Pnc(V ) will often be referred to as sheaves on Pnc(V ).
The noetherian objects of Pnc(V ) will be called coherent sheaves and their full
subcategory is denoted CohPnc(V ). We let π : GrA → Pnc(V ) denote the quotient
functor, we let ω : Pnc(V ) → GrA denote the section functor, which is the right
adjoint of π, and we let τ : GrA → TorsA denote the functor sending a module to
the sum of all its submodules which are objects of TorsA.

As we show below, the computation of the cohomology of line bundles will follow
from the formula for the right derived functors of τ . In [15], this computation is
carried out in case V is algebraic and K0 = K1. Now suppose V is non-algebraic
or K0 6= K1. In this case, one can check that the proofs and results in [15] through
[15, Corollary 4.12] still hold, as long as one modifies all statements to take into
account that we may have K0 6= K1. This allows us to import the computation of
the right derived functors of τ to our setting, and to employ this result in order to
compute the cohomology of line bundles.

To simplify the exposition in this and the following sections, we define Ai :=
πeiA. The Ai are the analogues of the line bundles O(−i) on P1 so we will refer to
them as line bundles on Pnc(V ) too.

In order to motivate our computation, recall that in the classical case P1 =
ProjS(K2) where S(K2) is the (commutative) symmetric algebra in two variables,
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we have

ExtiP1(O(−m),O(−n)) = Hi(P1,O(m− n)) =


Sm−n(K2) if i = 0

Sn−2−m(K2)∗ if i = 1

0 else.

We now proceed to show that we get a similar result in the non-commutative case.
By adjointness, we have the following isomorphism of functors from Pnc(V ) to
ModK:

HomPnc(V )(π(emA),−) ∼= HomGrA(emA,ω(−))
∼= HomModK(Amm, ω(−)m).

It follows that

(7-1) HomPnc(V )(Am,−) ∼= ω(−)m

and thus

(7-2) HomPnc(V )(Am,An) ∼= Anm

as right K-modules. Furthermore, it is routine to check that the isomorphism (7-2)
respects the natural left K-module structures.

Next, we compute Ext1
Pnc(V )(Am,An). We have

Ext1
Pnc(V )(Am,An) ∼= (R1ω(An))m(7-3)

∼= (R2τ(enA))m(7-4)
∼= A∗m,n−2

∼= ∗Am+2,n(7-5)

where the first isomorphism is from (7-1), the second follows from [15, Theorem
4.11], and the third follows from [15, Proposition 3.19 and Lemma 4.9].

Lemma 7.1. The isomorphism Ext1
Pnc(V )(Am,An)→ A∗m,n−2 above is a bimodule

isomorphism.

Proof. We need only check the isomorphism is compatible with the left K-module
structure. The fact that (7-3) is compatible is routine and left to the reader.
Similarly, the proof that (7-5) is compatible follows from the explicit description
of the isomorphism from the proof of [15, Theorem 4.4 and Lemma 4.9], and we
leave the straightforward details to the interested reader. To prove that (7-4) is
compatible with left multiplication, we note that if E• is an injective resolution of
enA in GrA, then each component is a direct sum of an injective graded torsion
submodule and an injective graded torsion free submodule (so that τ applied to the
module is zero) by [7, Corollaire 2]. Thus, as in the proof of [23, Theorem 11.26],
if I• denotes the graded torsion subcomplex of E•, we get a short exact sequence
of complexes of injective objects

0→ I• → E• → Q• → 0,

and the map (7-4) is the connecting homomorphism

R1ω(An) ∼= h1(ωπQ•) ∼= h1(Q•)→ h2(I•) ∼= R2τ(enA).

Therefore, the fact that (7-4) is compatible with multiplication follows from the
functorality of the long exact sequence on cohomology. �
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If i > 1, a similar argument using [15, Corollary 4.7] shows that

(7-6) ExtiPnc(V )(Am,−) ∼= (Ri+1τ(−))m = 0.

Now we find a tilting object for Pnc(V ). To this end, we will need the right hand
version of the Euler exact sequence from Lemma 3.6(3) in Pnc(V ):

(7-7) 0→Ai+2→(Ai+1)⊕2→Ai→ 0.

We also recall that the bimodule V gives rise to a species which is defined to be
the upper triangular matrix ring

(7-8) SpeV :=

(
K0 V
0 K1

)
.

It is clearly noetherian and hereditary.

Proposition 7.2. For all i ∈ Z, Ti := Ai ⊕ Ai+1 is a tilting object for Pnc(V ).
Furthermore, EndPnc(V ) Ti = SpeV i∗ so CohPnc(V ) and SpeV i∗ are derived equiv-
alent.

Proof. We let T = Ai⊕Ai+1. We first note that by (7-3), (7-4) and (7-5), we have

Ext1(Ai ⊕Ai+1,Ai ⊕Ai+1) = 0.

The computation of the endomorphism ring of Ti is immediate from (7-2). Let
addT be the full subcategory of Pnc(V ) consisting of direct summands of direct
sums of Ti and C be the smallest full subcategory containing addT which is closed
under kernels of surjections. By (7-7), we see that C includes all the Aj for j ≥ i.
These form a set of generators for Pnc(V ). Finally, Pnc(V ) has finite homological
dimension by Proposition 6.1 so we are done by [11, Proposition 4.2]. �

Our next result is a version of Serre vanishing and Serre finiteness. Recall that
emA is a left Km-module so ExtiPnc(V )(Am,M) is a right vector space over Km.

Theorem 7.3. For any coherent sheaf M∈ CohPnc(V ), the vector space

ExtiPnc(V )(Am,M)

is finite dimensional over Km. Furthermore, if i > 0 then ExtiPnc(V )(Am,M) = 0
for m� 0.

Proof. For the convenience of the reader, we include the proof of this result, a more
complicated version of which was proved in [16, Theorem 3.5(2)]. First note that
the theorem holds for M = An by (7-1,7-5,7-6). Since A has global dimension 2
by Proposition 6.1, an arbitrary coherent sheaf M has a finite resolution by finite
direct sums of line bundles An. The result follows. �

Unlike the category of graded modules over a Z-graded algebra, the category of
graded modules over a Z-indexed algebra D does not have a natural shift functor.
The analogue of the shift functor when it does exist is defined as follows. Let D(δ)
be the Z-indexed algebra which is re-indexed so D(δ)ij = Di+δ,j+δ. A degree δ-
automorphism of D is an isomorphism D→D(δ). Let φ : D→D(δ) be a degree
δ-automorphism and M be a right D-module.
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Definition 7.4. We define Mφ(δ) to be the D-module whose degree i component
is Mφ(δ)i = Mi+δ and whose multiplication map is

Mφ(δ)i ⊗Dij→Mφ(δ)j : mi+δ ⊗ aij 7→ mi+δφ(aij).

We call Mφ(δ) the twist of M by φ.

Twisting is clearly an invertible functor, and it is straightforward to check that it
induces an invertible functor on ProjD.

We may finally relate the non-commutative symmetric algebra to Dlab and
Ringel’s preprojective algebra Π(V ) introduced in [6]. This is defined via gener-
ators and relations by

Π(V ) = T (V ⊕ V ∗)/R
and the ideal of relations R is generated by the images of the natural maps

K0→V ⊗K1 V
∗

and

K1→V ∗ ⊗K0
V

defined in Section 3.2, where we have identified V with V ∗∗ using Lemma 3.4. In
the construction of the tensor algebra, we only allow alternating tensor products
of V and V ∗ such as V ⊗K1

V ∗ ⊗K0
V but not V ⊗ V which in general does not

make sense. The preprojective algebra is often graded by putting V, V ∗ in degree
1, though it will turn out below, that this is not the grading we want.

Before stating the next result, note that the isomorphism V →V ∗∗ of Lemma 3.4
induces a degree two isomorphism φ : A→A(2).

Proposition 7.5. Let ν = (−)φ(2) be the twist by φ functor on Pnc(V ) and T−1 =
A0 ⊕A−1. Then Π(V ) is isomorphic to the orbit algebra⊕

n≥0

HomPnc(V )(T−1, ν
nT−1).

In particular we have ProjSnc(V ) ∼= Proj Π(V ).

Proof. Note that ν(eiA) is a projective module generated by a single element in
degree i − 2. Hence νAi ∼= Ai−2. A simple computation using (7-2) shows that
the orbit algebra is isomorphic (as an ungraded algebra) to Π(V ). The equivalence
between the Proj categories (when Π(V ) is endowed with a grading via the afore-
mentioned isomorphism) now follows from [3, Theorem 4.5]. Indeed, Theorem 7.3
shows that ν is ample and furthermore, HomPnc(V )(T−1,M) is a finite K0 ×K−1-
bimodule for any coherent sheaf M. �

This proposition shows that in some sense, Π(V ) is a non-commutative 2-Veronese
of Snc(V ) so it is easy to recover the former from the latter.

8. A is Auslander regular

In this section, we prove that A = Snc(V ) is Auslander regular in an appropriate
sense. This allows us to show that Pnc(V ) is hereditary, generalizing a familiar
result for P1. This important result will in turn be used in later sections to prove a
type of Serre duality, and allows us to identify Db(CohPnc(V )) with the repetitive
category.
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Given a Z-indexed algebra D, a right (respectively left) D-module M , and D-
bimodule B, we define

ExtiD(M,B) = ⊕i Exti(M, eiB)

which we note is naturally a left (respectively right) D-module. We similarly define
ExtiD(B,M) and if B′ is another D-bimodule then we define the D −D-bimodule
Exti(B,B′) = ⊕i,jExti(ejB, eiB

′). We define the (traditional) grade of M to be

j(M) := min{i|ExtiD(M,D) 6= 0}
(it is more common now to replace the bimodule D above with the balanced du-
alizing complex which usually shifts the values of the grade). We say that D is
Auslander-Gorenstein if D has finite injective dimension and for any noetherian
module M (left or right) and submodule N < ExtiD(M,D), we have j(N) ≥ i. If
further gl.dimD is finite, we say D is Auslander regular.

We will need the following terminology in the proof of the next result. We
say an A-module M is g-torsion if each element of M is annihilated by gn =
{gigi+δ . . . gi+(n−1)δ} for n large enough. We say M is g-torsion free if right multi-
plication by g is injective on M .

Proposition 8.1. B = A/I is Auslander-Gorenstein of injective dimension 1.

Proof. First note that the right hand version of the Euler exact sequence (Lemma
3.6) shows that idA ejA = 2. The standard graded proof that idB = 1 holds as
follows. Let δ = deg gi. Note that left multiplication by gi induces the following
exact sequence

0→ ei+δA
gi−→ eiA→ eiB→ 0.

Taking the direct sum over all i gives the exact sequence

(8-1) 0→A
g−→ A→A/I→ 0.

Consider a minimal injective resolution of right A-modules

0→A→ J0→ J1→ J2→ 0.

Now A is g-torsion free so minimality ensures that J0 must be g-torsion free too and
hence HomA(A/I, J0) = 0. Adjointness of Hom,⊗ ensures that the HomA(A/I, Jj)
are injective A/I-modules so applying HomA(A/I,−) to the injective resolution for
A gives the A/I-injective resolution

0→Ext1
A(A/I,A)→HomA(A/I, J1)→HomA(A/I, J2)→ 0.

Now from the resolution (8-1) for A/I we see that Ext1
A(A/I,A) ' A/I. We thus

have a length one B-injective resolution of B.
To check the Auslander condition for B, we use its ring of fractions C as decribed

in Section 5. Now, the global dimension of C is zero by Proposition 2.2(2). Since
B has injective dimension 1, we need only check that for any noetherian B-module
M and submodule N of Ext1

B(M,B) we have j(N) 6= 0. For definiteness, we
work with a right module M . Now localization is exact so C ⊗B Ext1

B(M,B) =
Ext1

C(M ⊗B C,C) = 0. Hence C ⊗B N = 0 so N is torsion and we must have
HomB(N,B) = 0. Thus j(N) > 0 and the proposition is proved. �

Before proving that A is Auslander regular, we need to recover some of the
general theory of Auslander-Gorenstein rings in the Z-indexed case. It turns out
that the proofs as written in [27] generalize better than the old original papers. For
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example, Levasseur in [12] sometimes passes to the ungraded algebra which makes
no sense in the indexed setting. Hence we follow the treatment in [27] closely.

Suppose D is an Auslander-Gorenstein algebra of injective dimension d. We
define the canonical dimension of a D-module M to be CdimM = CdimDM =
d−j(M). If we always have CdimM = dimM then we will say that D is Macaulay.
Let Dfg(D) denote the derived category of complexes of D-modules with finitely
generated cohomologies. Then as in [27, Proposition 1.3], RHomD(−, D) induces a
duality between Dfg(D) and Dfg(D

op). As already remarked in Section 2, this can
be computed by replacing D with a finite complex of bimodules which is simulta-
neously left and right injective. Hence we still have the usual double-Ext spectral
sequence [27, Proposition 1.7] in this setting so [27, Lemma 2.11] holds to give the
following exactness result for Cdim.

Proposition 8.2. Given a short exact sequence 0→M ′→M→M ′′→ 0 of noe-
therian D-modules we have

CdimM = max{CdimM ′,CdimM ′′}.

One may now repeat the proofs in [27, Proposition 2.14-Corollary 2.17] and [1,
Lemma 1.1-Corollary 1.3] to obtain the following results. Below we let Kdim denote
the Krull dimension as defined in standard ring theory texts such as [13, Chapter 6].

Theorem 8.3. Let M be a noetherian D-module.

(1) KdimM ≤ CdimM .
(2) M has a Cdim-critical composition series.

Corollary 8.4. A/I is Macaulay.

Proof. Let M be a noetherian A/I-module. If CdimM = 0 then Theorem 8.3(1)
shows that M has finite length so dimM = 0. If on the other hand CdimM = 1
then HomA/I(M,A/I) 6= 0 so M has a non-zero homomorphic image in some eiA/I.

But from the twisted ring structure of A/I (Theorem 5.2), we see that eiA/I is
1-pure so dimM = 1. �

We have not yet studied the notion of balanced dualizing complexes for even in
the graded or local case, one usually assumes that D̄ is finite dimensional over some
central base field. Nevertheless, some of the results of [27, Section 4] hold.

Proposition 8.5. Let n ∈ N.

(1) For any noetherian A/In-module M , we have CdimA/InM = CdimAM .
(2) A/In is Auslander Gorenstein.
(3) A/In is Macaulay.

Proof. We follow the treatment of [27, Corollary 4.15, Proposition 4.16]. To prove
(1), note first that A/In has injective dimension 1 as a module over itself by the
argument in the proof of Proposition 8.1. It thus suffices to show that jA/InM =
jAM − 1. Consider the change of rings spectral sequence

ExtpA/In(−,ExtqA(A/In, A)) =⇒ Extp+qA (−, A).

Now In is generated by the normal family gn = {gigi+δ . . . gi+(n−1)δ} so we may
compute ExtqA(A/In, A) and see the spectral sequence collapses to

(8-2) ExtpA/In(−, A/In) ' Extp+1
A (−, A).
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Part (1) follows.
To prove part (2), we use induction on n, the case n = 1 being Proposition 8.1.

Suppose A/In−1 is Auslander-Gorenstein and let M be a noetherian A/In-module.
Consider the exact sequence

(8-3) 0→MI→M→M/MI→ 0.

Note that MI,M/MI are A/In−1-modules and by part (1), their j numbers as
A/In-modules and A/In−1-modules are the same. Consider the long exact sequence

. . .→ExtpA/In(M/MI,A/In)→ExtpA/In(M,A/In)→ExtpA/In(MI,A/In)→ . . . .

This shows that any submodule N of ExtpA/In(M,A/In) sits in a short exact se-

quence of the form
0→N ′→N→N ′′→ 0

where N ′, N ′′ are subquotients of ExtpA/In(M/MI,A/In),ExtpA/In(MI,A/In) re-

spectively so have j number ≥ p by induction. It follows that j(N) ≥ p too and we
are done.

(3) Now follows from induction and exactness of dim and Cdim applied to (8-
3). �

If D is a connected graded noetherian algebra with a normal element g of positive
degree, then it is a classical result of Levasseur [12], that D is Auslander-Gorenstein
if and only if D/(g) is. To show A is Auslander regular, we need a similar result
obtained by mimicking the proof in [27, Section 5].

Theorem 8.6. A is Auslander regular and Macaulay.

Proof. The proof in [27, Theorem 5.1] can be carried over to our setting and we
only indicate how to adapt their graded proof to our indexed setting. The proof
essentially divides up into two cases, when a noetherian A-module M is g-torsion,
and when it is g-torsion free. The first case is disposed of using Corollary 8.4 and
Proposition 8.5.

To dispose of the g-torsion free case we need to introduce some new notation.
Since g = {gi} is a normal family of degree δ with all gi non-zero-divisors, conju-
gation by the gi is a degree δ-automorphism of A. Explicitly, this conjugation map
is

φ : Dij→Di+δ,j+δ : aij 7→ g−1
i aijgj .

For any right D-module M , the multiplication by gi maps gi : Mi→Mi+δ assemble
to give a D-module morphism

(8-4) Mφ−1

(−δ) g−→M

which is injective if M is g-torsion-free. Analyzing the exact sequence

0→Mφ−1

(−δ) g−→M→M/M(gi)→ 0

as in [27, Theorem 5.1] completes the proof. �

Corollary 8.7. Pnc(V ) is hereditary.

Proof. Let M be any noetherian A-module and

0→M→ J0→ J1→ J2→ 0

be a minimal injective resolution. It suffices to show that J2 is graded torsion for
then as in [3, (7.1.4)], it will induce a length one injective resolution in Pnc(V ). The
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proof of [1, Proposition 2.4] can be repeated to show that J2 is essentially 0-pure
with respect to the canonical dimension. Note that by Theorem 8.3, a noetherian
module has canonical dimension 0 if and only if it has finite length. It now follows
from [3, Proposition 2.2(2)] that J2 is itself graded torsion. �

The Auslander-Gorenstein theory proof of [1, Proposition 2.5(3)] can be repeated
in the Z-indexed context to reprove the following result of Nyman’s [17, Lemma 3.5].

Lemma 8.8. If M is a noetherian A-module, then HomA(Ā,M) 6= 0 iff pdAM =
2.

9. Classical Serre duality and Hilbert functions

If V is not algebraic, then Pnc(V ) is not Hom-finite, so there is no chance of
defining a Serre functor. However, classical versions of Serre duality do hold. We
examine such results in this section and apply them to the study of Hilbert functions
of torsion sheaves.

A coherent sheaf is torsion (respectively torsion free) if it has the form πM for
some torsion (respectively torsion free) A-module M .

Note that EndAi = Ki so ExtpPnc(V )(Ai,M) is naturally a right vector space over

K whilst ExtpPnc(V )(M,Ai) is a left vector space. When A is the usual symmetric

algeba S∗(K2), then ExtpP1(A0,−) = Hp(P1,−) and ωP1 ∼= A2 so the following
generalizes Serre’s original duality theorem.

Theorem 9.1. For any coherent sheaf M∈ CohPnc(V ), there is a natural isomor-
phism of right K-spaces

Ext1−p
Pnc(V )(Ai,M) ' ∗ ExtpPnc(V )(M,Ai+2).

Proof. This follows from the usual proof for classical Serre duality [10] and the
cohomology of line bundles computations in Section 7. The reader can check [4] for
details. �

To study Hilbert functions, we need to recall the theory of Euler characteristics.
For arbitrary coherent M, we define the function

χ(M, n) = dimK HomPnc(V )(An,M)− dimK Ext1
Pnc(V )(An,M).

Now ωM = ⊕n HomPnc(V )(An,M) so there is a strong relationship between the
function χ(M,−) and the Hilbert function fωM introduced in Section 6. Indeed,
(7-2, 7-5) show that

χ(Ai, n) = n− i+ 1, for all n.

Since every coherent sheaf has a resolution by direct sums ofAi, we see that χ(M, n)
is a polynomial which equals fωM(n) for all sufficiently large n.

Corollary 9.2. Let M be a torsion coherent sheaf on Pnc(V ). Then fωM is con-
stant.

Proof. Note thatM = πM for some torsion module M . Since it is torsion, j(M) >
0 and dimM = CdimM ≤ 1 as A is Macaulay. It follows that χ(M, n) is constant.
From classical Serre duality Theorem 9.1, we know that Ext1

Pnc(V )(An,M) = 0 so

fωM = χ(M, n) is constant too. �
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Before proving our second version of Serre duality, we need to introduce some
notation. Let g = {gi} be the normal family of elements in A = Snc(V ) defined
in Section 4 and φ : A → A(δ) be conjugation by g where δ = deg g. Note that φ
is left and right K-linear in the sense that Ki = Ki+δ and with this identification,
the restricted maps φ : Aij → Ai+δ,j+δ are Ki−Kj-bimodule maps. Also φ(g) = g
as in the usual graded case. Analogous to (8-4), right multiplication by g induces
a morphism

Mφ−1

(−δ) g−→M.

We denote the image of this map by Mg.

Lemma 9.3. Let M,N be sheaves on Pnc(V ). The maps

(g,N ) : ExtiPnc(V )(M,N )→ExtiPnc(V )(Mφ−1

(−δ),N ),

(M, g) : ExtiPnc(V )(M,N )→ExtiPnc(V )(M,N φ(δ))

have isomorphic kernels and cokernels.

Proof. The case i = 0 follows from the commutative diagram

Hom(M,N ) Hom(M,N )

(g,N )

y y(M,g)

Hom(Mφ−1

(−δ),N )
(−)φ(δ)−−−−−→ Hom(M,N φ(δ))

The general case follows from taking an injective resolution I• for N and using the
injective resolution I•φ(δ) for N φ(δ). �

Note that eiA/giA is also a left vector space over Ki. Our final version of Serre
duality is

Proposition 9.4. For any coherent sheaf M, there is a natural isomorphism of
right K-spaces

HomPnc(V )(Ai/Aig,M) ∼= ∗ Ext1
Pnc(V )(M,Ai+2/Ai+2g).

Proof. Below we drop the subscript Pnc(V ) for Hom and Ext spaces and use classical
Serre duality (Theorem 9.1) and Lemma 9.3.

Hom(Ai/Aig,M) ∼= ker
(

(g,M) : Hom(Ai,M)→Hom(Aφ
−1

i (−δ),M)
)

∼= ker
(
(Ai, g) : Hom(Ai,M)→Hom(Ai,Mφ(δ))

)
∼= ker

(
(g,Ai+2) : ∗ Ext1(M,Ai+2)→ ∗ Ext1(Mφ(δ),Ai+2)

)
∼= ker

(
(Mφ(δ), g) : ∗ Ext1(Mφ(δ),Aφi+2(δ))→ ∗ Ext1(Mφ(δ),Ai+2)

)
∼= ∗ Ext1(Mφ(δ),Aφi+2(δ)/Aφi+2(δ)g)

∼= ∗ Ext1
Pnc(V )(M,Ai+2/Ai+2g).

�
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10. Sheaves on Pnc(V ) and modules over corresponding species

In this section we give a fairly complete description of coherent sheaves on Pnc(V )
and then use the derived equivalence from Proposition 7.2 to give the analogous
description of modules over the species Λ = SpeV defined in (7-8).

We fix the tilting bundle T = A0 ⊕ A1 and let Φ = RHomPnc(V )(T ,−) :

Db(Pnc(V ))→Db(Λ). Recall that, by Corollary 8.7, Pnc(V ) is hereditary so ev-
ery bounded complex of sheaves is isomorphic to a direct sum of shifts of sheaves.
There is a similar result for complexes of Λ-modules. In particular, Φ gives a bijec-
tion between indecomposable coherent sheaves and indecomposable modules. More
precisely, given an indecomposable coherent sheaf M, there is a unique integer n
such that the shift Φ(M)[n] is an indecomposable Λ-module and every indecom-
posable module arises this way.

10.1. Classification of torsion-free sheaves. We wish to recover the following
results of [17, Theorem 3.14]: a non-commutative Grothendieck’s splitting theorem
for torsion-free sheaves and the fact that every coherent sheaf is the direct sum of
a torsion sheaf with a torsion free sheaf. Our treatment here is parallel to that in
[17] but bypasses the general torsion theory for non-commutative integral spaces
by using the torsion theory for Z-indexed algebras developed in Section 2.

We start with Grothendieck splitting.

Theorem 10.1. Any torsion-free coherent sheaf on Pnc(V ) is isomorphic to a
direct sum of Ai’s (for possibly different i).

Proof. Let M be a torsion-free noetherian A-module. We wish to show πM is a
direct sum of Ai’s. By Proposition 2.5, one can construct an exact sequence of the
form

0→M→(eiA)⊕n
φ−→ N→ 0

for some module N . We may assume that the graded torsion submodule τN of N is
zero, for otherwise we may replace M with M ′ := φ−1τN and note that πM ′ ' πM .
It follows now from Lemma 8.8 that pdAN ≤ 1 so M must be projective. Hence
M is a direct sum of eiA and the theorem is proved. �

Let M be a noetherian A-module and M = πM . We let M ′ be the torsion
submodule and define M′ := πM ′ to be the torsion subsheaf of M. We consider
the exact sequence

0→M′→M→M/M′→ 0.

NowM/M′ is torsion-free and hence a direct sum of Ai’s. By Serre duality (The-
orem 9.1), we know that

Ext1
Pnc(V )(Ai,M′)∗ ' HomPnc(V )(M′,Ai+2) = 0

so the exact sequence splits giving the next result which was also proved in [17,
Theorem 3.14]:

Proposition 10.2. Any coherent sheaf on Pnc(V ) is a direct sum of its torsion
subsheaf and a torsion-free sheaf.
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10.2. Classification of irregular indecomposable modules over the species.
We are now in a position to give a complete description of irregular Λ-modules using
the theory of Section 10.1. Let e0 = ( 1 0

0 0 ) , e1 = ( 0 0
0 1 ) be the standard diagonal

idempotents in Λ. Following Ringel [22, Section 7], we define the defect of a right
Λ-module M to be

∂M = dimKMe0 − dimKMe1.

A Λ-module M is said to be regular, if it is a direct sum of indecomposable modules
of defect 0. A module is otherwise said to be irregular. We sometimes use the
notation M0 ⊗K V →M1 to denote the Λ-module it defines.

We now show that the Ai give irregular modules. Indeed, if i ≤ 1, then (7-2)
shows that the corresponding Λ-module is

Φ(Ai) : Ai0 ⊗K V →Ai1.

Here the multiplication map is just multiplication in the Z-indexed algebra and the
defect is −1. On the other hand, if i > 1, then (7-3), (7-4), and (7-5) gives the
corresponding Λ-module as

Φ(Ai)[1] : A∗0i−2 ⊗K V
m−→ A∗1i−2.

Here the defect is 1 and the multiplication map m is given by dualizing the multi-
plication in A map V ⊗K A1i−2→A0i−2.

We next examine the defect of Φ(M) for a torsion sheaf M.

Proposition 10.3. Let M be a torsion coherent sheaf on Pnc(V ). Then Φ(M)
has defect zero.

Proof. This follows from Corollary 9.2 since

dimK Φ(M)e0 = dimK HomPnc(V )(A0,M)

= dimK HomPnc(V )(A1,M)

= dimK Φ(M)e1,

�

Putting our computations together with our structure theory for coherent sheaves
Theorem 10.1, Proposition 10.2 immediately gives the next result.

Corollary 10.4. The full subcategory of regular Λ-modules corresponds via Φ to
the full subcategory of coherent torsion sheaves on Pnc(V ).

We also obtain the following result of Ringel [22, 6.6 Lemma]. The only difference
is that his description of irregular modules are given in terms of the Coxeter functor,
whereas ours are immediately read off the non-commutative symmetric algebra. A
similar description is also given in [6] except that they use the preprojective algebra
as opposed to our non-commutative symmetric algebra.

Proposition 10.5. Let M be an indecomposable irregular Λ-module. Then it is
isomorphic to one of the following:

Ai0 ⊗K V →Ai1 or A∗0i−2 ⊗K V →A∗1i−2.

Any such module is uniquely determined up to isomorphism by the pair of integers
(dimKMe0,dimKMe1) which must differ by 1.
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10.3. Classification of g-torsion sheaves. In this section we classify the follow-
ing torsion coherent sheaves. Let g = {gi} be the normal family of elements defined
in Section 4 and I be the ideal generated by g. Recall a noetherian A-module M
is said to be g-torsion if each element is annihilated by gn+1 = gigi+δ . . . gi+nδ for
sufficiently large n. In this case, the corresponding sheaf πM will be said to be
g-torsion too. Let T be the full subcategory of CohPnc(V ) consisting of g-torsion
sheaves. It is straightforward to check that T is abelian. Our goal is to show that
T is uniserial.

We omit the elementary proof of the following lemma, which we will use repeat-
edly without mention in the future.

Lemma 10.6. A coherent sheaf M is g-torsion if and only if Mgn = 0 for some
n ≥ 0.

Let B = A/I be the twisted ring studied in Section 5. We saw that its ring of
fractions C is in fact the full twisted ring. In fact, the embedding B ↪→ C is an
isomorphism in positive degrees. Furthermore, if δ = deg g, then dimK Cij = δ
both as a left and right vector space. We wish first to study the g-torsion sheaf
Bi := π(eiB) = Ai/Aig. The first result about this sheaf is the following.

Proposition 10.7. ωBi = eiC. In particular, Bi is simple.

Proof. From the structure of C as a full twisted ring, we see that HomA(Ā, eiC) = 0
so eiC embeds in ωBi. Equality follows by comparing Hilbert functions using the
fact that fωBi is constant by Corollary 9.2.

To prove simplicity when V is non-simple, note that δ = 1 so the Hilbert function
is the constant 1 and we are done. When V is simple, then from the multiplication
formula (5-1) for C, we see that any non-zero element of eiC generates eiC in
sufficiently high degree. Hence Bi is simple. �

This easily gives the endomorphism rings of the Bi.
Corollary 10.8. If δ = 1 then EndBi = Ki. If δ = 2 then EndBi = F where F is
the field defined in Lemma 3.1(2).

Proof. First note the following inequality of right vector space dimensions

dimK End Bi ≤ dimK Hom(Ai,Bi) = δ.

When δ = 1, then left multiplication by K on eiB induces an embedding K ↪→
End Bi which is an isomorphism by the inequality above. When δ = 2, then left
multiplication by F on eiC gives an embedding F ↪→ End Bi which again is an
isomorphism as before. �

Proposition 10.9. Let i ∈ Z.

(1) Let M 6= 0 be a coherent sheaf with Mg = 0. Then there is a non-zero
embedding Bi ↪→M.

(2) Bi ∼= Bj for any j ∈ Z.
(3) In particular, B0 is the unique simple g-torsion sheaf.

Proof. We first prove part (1). Corollary 9.2 shows that the Hilbert function fωM
is constant non-zero so there is a non-zero homomorphism φ : eiA→ωM. Now g
annihilates φ(ei) so φ factors through a non-zero eiB→ωM. The corresponding
morphism of sheaves Bi→M is injective since Bi is simple by Proposition 10.7.
This proves part (1) and part (2) follows.
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We now prove part (3). LetM be a simple g-torsion sheaf. NowMg is a proper
submodule so must be 0 by simplicity. Part (1) gives a non-zero embedding of B0

into M so we are done. �

We can now prove the main results of this subsection.

Corollary 10.10. The category T is uniserial.

Proof. By [8, 8.3], it suffices to show that each object of T has finite length, T has
a unique simple object S, and Ext1(S,S) is one-dimensional as a left and right
End(S)-module.

We know from Proposition 10.9(3) that S = B0 is the unique simple in T. From
Serre duality (Proposition 9.4) and Proposition 10.9(2), we have an isomorphism

Ext1(B0,B0) ∼= Hom(B0,B0)∗

of (End B0)−K-bimodules. The calculation of End B0 in Corollary 10.8 then shows
that Ext1(B0,B0) must be one-dimensional as a left and right End B0-module.

Now T is a finite length category since the length of any filtration of M ∈ T is
bounded by the constant fωM. �

10.4. Classification of torsion sheaves. From the point of view of non-commutative
algebraic geometry, we can view our non-commutative projective line Pnc(V ) as hav-
ing a commutative subscheme consisting of a point with defining equation g = 0
and an affine complement SpecA[g−1]00. This decomposition allows us to split the
category of torsion sheaves mirroring Ringel’s classification or regular Λ-modules in
the case where V is non-algebraic but non-simple. In this subsection we establish
this splitting and identify the components.

If M is g-torsion-free then we will say that πM is g-torsion-free. We let F be
the full subcategory of CohPnc(V ) consisting of torsion sheaves which are g-torsion
free.

Let M be a noetherian A-module and M ′ be its g-torsion submodule. Then we
have an exact sequence

0→M ′→M→M/M ′→ 0

where M/M ′ is g-torsion-free. This gives an analogous exact sequence of sheaves

(10-1) 0→M′→M→M/M′→ 0

where M = πM,M′ = πM ′.

Theorem 10.11. The category of torsion coherent sheaves on Pnc(V ) is equivalent
to the product category T× F.

Proof. We first show that the exact sequence(10-1) splits. This amounts to show-
ing that Ext1(N ,M′) = 0 for any g-torsion coherent sheaf M′ and g-torsion free
coherent sheaf N . From Corollary 10.10 we know thatM′ is an iterated extension
of B0 = A0/A0g with itself. Hence it suffices to show that Ext1(N ,B0) = 0. Now
Hom(T,F) = 0 so Proposition 9.4 and Proposition 10.9(2) give

Ext1(N ,B0) = Hom(B0,N )∗ = 0.

It follows that the sequence (10-1) splits and every torsion coherent sheaf is a direct
sum of a g-torsion sheaf with a g-torsion free sheaf.

It remains only to show that Hom(F,T) = 0, or equivalently, that Hom(F,B0) =
0. Let N be a g-torsion free torsion coherent sheaf as before. Then N = ωN is
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also g-torsion free so the multiplication by g map Nφ−1

(−δ)→N is injective. It is
also surjective since the Hilbert function fN is constant by Corollary 9.2 and we
see N/Ng = 0. Now any homomorphism N→ωB0 factors through N/Ng so we
are done. �

In the course of the proof above, we established the following fact.

Lemma 10.12. Let N be a g-torsion free torsion coherent sheaf on Pnc(V ) and
N = ωN . Then multiplication by g on N is a vector space isomorphism.

We finish this subsection by identifying F with a module category. To this end,
consider the Z-indexed algebra A[g−1]. Let GrA[g−1] be the category of graded
A[g−1]-modules and grA[g−1] be its full subcategory of noetherian objects. Now
A[g−1] is strongly graded, so we immediately obtain the following.

Lemma 10.13. There is a category equivalence modA[g−1]00
∼= grA[g−1].

We need one more lemma.

Lemma 10.14. Let 0 6= x ∈ Ai,i+1 which is linearly independent from gi if δ = 1.
Then M := eiA/xA is g-torsion free. In particular, eiA[g−1] has infinite length as
an A[g−1]-module.

Proof. Recall that A is a domain so the Hilbert function fM = 1 in degrees ≥ i. In
addition, by Lemma 8.8, HomA(Ā,M) = 0 since pd M = 1. Thus, τM = 0. Now
by choice of x, we know that gi /∈ xA so Mg must also be a module whose Hilbert
function is 1 in degrees ≥ i + δ. This proves that M is indeed g-torsion free. It
follows that xA[g−1] is a submodule of eiA[g−1] of colength 1. We may of course,
continue finding submodules of colength 1 in xA[g−1] and so forth to show that
eiA[g−1] has infinite length. �

Let flA[g−1]00 denote the category of finite length objects in modA[g−1]00.

Proposition 10.15. The category equivalence of Lemma 10.13 induces an equiva-
lence of categories flA[g−1]00

∼= F.

Proof. We first identify the finite length subcategory of ProjA[g−1]. Note that there
is a natural localization functor ProjA→ProjA[g−1] = GrA[g−1]. Now if M is a
torsion g-torsion free coherent sheaf on Pnc(V ), then its image in ProjA[g−1] also

has finite length. Conversely, given a finite length A[g−1]-module M̃ , we can find a

noetherian g-torsion free A-module M such that M̃ = M [g−1]. Using Theorem 10.1
and Proposition 10.2, we may assume that M = Mf ⊕Mt where M is graded free
and Mt is torsion. If Mf 6= 0 then its image in ProjA[g−1] has infinite length by
Lemma 10.14. Hence the finite length objects of grA[g−1] are precisely those of the
form M [g−1] where M is a torsion g-torsion free noetherian A-module.

Let M,N be a g-torsion free torsion coherent sheaves on Pnc(V ). We wish to
show that the functor M 7→ ωM[g−1] is an equivalence of F with the finite length
subcategory of grA[g−1]. To this end, let M = ωM, N = ωN . Lemma 10.12 shows
that M = M [g−1], N = N [g−1]. Then

HomPnc(V )(M,N ) = HomA(M,N)

= HomA(M [g−1], N [g−1])

= HomA[g−1](M [g−1], N [g−1]).

Combining with Lemma 10.13 yields the proposition. �



28 D. CHAN AND A. NYMAN

We next show that the non-commutative “affine co-ordinate ring” A[g−1]00 is
well understood when the bimodule V is non-simple. We use the following notation:
given a ring R and automorphism α, we let R[z;α] denote the skew polynomial ring
with defining relation zr = α(r)z, whilst if ∂ is a derivation of R, we let R[z; ∂] be
the skew polynomial ring with defining relation zr = rz + ∂r.

Proposition 10.16. Suppose V is non-simple so we are either in the split case
(1a) or non-split case (1b) of Lemma 3.1. In the notation of that lemma, either

(1) V is split, in which case στ−1 is an automorphism of K0 and A[g−1]00
∼=

K0[z;στ−1], or
(2) V is non-split, in which case δσ−1 is a derivation of K0 and A[g−1]00

∼=
K0[z; δσ−1].

Proof. In both cases, one verifies directly that A[g−1]00 is generated as a ring by
K0 and z = xy−1 in the notation of Section 5.2. The defining relations for the skew
polynomial ring are easily checked for A[g−1]00. For example, if V is non-split and
r ∈ K0 then

xy−1r = xσ−1(r)y−1 = (rx+ δσ−1(r)y)y−1 = rxy−1 + δσ−1(r).

It remains only to show that the zi are left linearly independent overK0. The easiest
way to see this is to consider the injective right multiplication by (g0g1 . . . gn−1)−1

map ρ : A0n ↪→ A[g−1]00. The result follows since the left dimension dimK0
A0n =

n+ 1 whilst im ρ is spanned over K0 by 1, z, . . . , zn. �

10.5. Classification of regular modules. In this subsection, we use the clas-
sification results for torsion sheaves to give an explicit description of regular Λ-
modules. Putting together Corollary 10.4, Theorem 10.11 and Proposition 10.15 we
immediately obtain the following description of the category of regular Λ-modules.

Theorem 10.17. The category of regular Λ-modules is equivalent to the product
category flA[g−1]00 × T where T is uniserial.

We now use the derived equivalence Φ to give a description of these regular
modules. We start with the ones corresponding to T, the g-torsion sheaves.

Let B0 be the unique simple g-torsion sheaf. It’s quite easy to determine Φ(B0).
If V is simple so is given by a field F in the notation of Lemma 3.1(2), then Φ(B0)
is the Λ-module

m : F ⊗K1 F →F

where m is field multiplication. If V is non-simple, then g0 ∈ V generates a proper
sub-bimodule Kg0 and the quotient V̄ := V/Kg0 is an invertible K −K-bimodule.
In this language, Φ(B0) is the natural map

K ⊗K V →K ⊗K V̄ ∼= K.

Consider now the indecomposable n-fold extension B0(n) of B0 with itself. The
following proposition allows us to “read off” Φ(B0(n)) from the non-commutative
symmetric algebra.

Proposition 10.18. Let gn = g1−nδg1−(n−1)δ . . . g1−δ. Then Φ(B0(n)) is given by
the composite map

A1−nδ,0 ⊗K V
m−→ A1−nδ,1

q−→ A1−nδ,1

gnA11

where m is multiplication in A and q is the canonical quotient map.
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Proof. Consider the exact sequence

0→ e1A
gn−→ e1−nδA→ e1−nδA/g

nA→ 0.

Now B0(n) = π(e1−nδA/g
nA). Hence Φ(B0(n) is given by

ωπ(e1−nδA/g
nA)0 ⊗K V →ωπ(e1−nδA/g

nA)1.

Also, pd e1−nδA/g
nA = 1 so e1−nδA/g

nA embeds in ω(e1−nδA/g
nA) by Lemma 8.8.

Furthermore, the Hilbert function of e1−nδA/g
nA is the constant nδ in non-negative

degrees so in fact (e1−nδA/g
nA)i = ωπ(e1−nδA/g

nA)i for i ≥ 0. �

We turn now to studying the regular modules corresponding to g-torsion free
sheaves. To simplify notation, we let Ag := A[g−1]00. Note that the multiplication
map Ag ⊗K V →A[g−1]01 is surjective, so we will usually abbreviate A[g−1]01 =

AgV . Let Ψ : flAg
∼=−→ F be the category equivalence of Proposition 10.15. The

proof of this proposition immediately gives

Proposition 10.19. The composite functor ΦΨ sends a finite length Ag-module
M to the Λ-module

m : M ⊗K V →M ⊗Ag AgV
where m is induced by inclusion V ↪→ AgV .

To make the Λ-module in this proposition explicit, we need only compute the left
Ag-module AgV . We give a minimal presentation of this module which, by right
exactness of ⊗ will allow us to compute explicitly the term M ⊗Ag AgV above.
Given a two-sided basis x, y for V we let ∗x,∗ y be a dual basis in ∗V and ∗∗x,∗∗ y
be a dual basis of that in ∗∗V .

Proposition 10.20. If V is non-simple, then AgV ∼= Ag and in fact is freely
generated by y. If V is simple, then there is a presentation

A⊕2
g

g−1
−2
∗∗x ∗x g−1

−2
∗∗x ∗y

g−1
−2
∗∗y ∗x g−1

−2
∗∗y ∗y


−−−−−−−−−−−−−−−−−−−−→ A⊕2

g

x
y


−−−→ AgV → 0.

Proof. Let x, y be a two-sided basis for V . We know x, y then also generates the
Ag-module AgV . It remains then only to compute module relations. Any such
relation can be written in the form

g−nax+ g−nby = 0

for some a, b ∈ A−nδ,0 and g−n = g−1
−δg

−1
−2δ . . . g

−1
−nδ. This gives the relation ax+by =

0 in A. The Euler exact sequence (Lemma 3.6(2)) shows that (a b) = (c ∗x c ∗y) for
some c ∈ A−nδ,−1. If δ = 1, then the relations are generated by (a b) = ( ∗x ∗y).
In this case, we may furthermore assume that g−1 = ∗x so the relation reduces
to x = −(g−1 ∗y)y which completes the cases when V is non-simple. When V is
simple, then δ = 2 so c has to have odd degree and the relations are given by letting
c vary over a basis of A−2,−1. This completes the case where δ = 2. �

Putting together these two propositions gives a classification of regular modules
corresponding to g-torsion free sheaves which generalizes exactly the construction
Ringel gives in the V non-simple case in [22, Theorem 7.4].
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