LOCAL DUALITY FOR CONNECTED Z-ALGEBRAS

I. MORI AND A. NYMAN

ABSTRACT. We develop basic homological machinery for Z-algebras in order
to prove a version of local duality for Ext-finite connected Z-algebras. As an
application, we compare two notions of regularity for such algebras.

Throughout this paper, k& will denote a field over which all objects are defined.

1. INTRODUCTION

In algebraic geometry, projective varieties over k are studied via their homoge-
nous coordinate rings, which are commutative, connected, finitely generated N-
graded k-algebras. This simple observation inspired some of the early development
in noncommutative algebraic geometry, in which geometric objects are defined in
terms of (possibly noncommutative) Z-graded rings, specializing to the usual com-
mutative theory [1], [21]. The subject has since blossomed, finding points of contact
with physics, differential geometry and number theory.

In another approach to the subject, initially explored in [2] and [15] and further
developed in [20] and [16], geometric objects are constructed from Z-algebras, which
are defined in terms of pre-additive categories whose objects are indexed by Z. From
this perspective, the Z-algebra associated to a pre-additive category is its ring of
morphisms. For example, if X is a projective variety embedding in a projective
space and O(i) denotes the i-th tensor power of the tautological line bundle, one
defines D;; = Homo, (O(—j),O(—i)) and one gets the Z-algebra P, ; Di; with
multiplication induced by composition. In fact, given any collection of objects in a
category indexed by a set I, one can form the associated [-algebra in a similar way.

Not only can one recover the theory of Z-graded algebras from that of Z-algebras
in the sense that every Z-graded algebra is graded Morita equivalent to a Z-algebra
[16], [20], but also various results from graded ring theory have much simpler con-
ceptual proofs when viewed from the Z-algebra perspective (see, for example [16,
Theorem 1.2]). As another example of the utility of Z-algebras, M. Van den Bergh
discovered, via deformation theoretic arguments, that there should be more non-
commutative quadric surfaces than had been found as noncommutative spaces aris-
ing from cubic AS-regular algebras of dimension 3, and realized these missing spaces
as having Z-algebras coordinate rings [20]. Van den Bergh also discovered a general
notion of noncommutative P'-bundles over commutative schemes using Z-algebras
that generalized the initial notion studied by D. Patrick utilizing Z-graded algebras
[14].

Although the Z-algebra approach to noncommutative projective geometry may
be the more natural one as discussed above, for historical reasons it has not been
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pursued as vigorously as the Z-graded approach. The goal of this paper is to
develop enough basic homological machinery of modules over Z-algebras to prove a
Z-algebra version of local duality [18, Theorem 5.1(2)]. As an application of local
duality, we explore the relationship between several notions of regularity studied
in [9] in the Z-graded context, AS-regularity and ASF-regularity. In particular we
show, in Theorem 7.10, that these conditions are equivalent under a hypothesis
which, in the Z-graded context, follows from the existence of a balanced dualizing
complex. In the Z-graded case, the equivalence of these conditions follows from [9,
Theorem 3.12] and [11, Theorem 2.19]. In addition, we employ local duality to prove
a Z-algebra version of [7, Theorem 3.3], which gives a duality between the bounded
derived categories D?(cohA) and D?(cohA°P). As is stated and substantiated in [7],
this duality is fundamental to many of the applications of local duality in both the
commutative and noncommutative worlds.

One of the themes of projective geometry is to characterize a space via its homo-
logical properties. Although there are currently few such results in noncommutative
projective geometry, the theory would benefit from further development in this di-
rection. In [10] we use both local duality and part of our comparison of regularity
conditions (Corollary 7.6) to obtain a Z-algebra version of the recognition theo-
rem of Mori and Ueyama [11] characterizing those abelian categories which are
noncommutative spaces having a Z-graded AS-regular coordinate ring.

We now give a brief description of the contents of this paper. In Section 2, we
recall the definition and basic properties of I-algebras and their opposites. We then
define, in Section 3, the main objects of study in this paper, connected Z-algebras.
It turns out that, as in the Z-graded case, the Ext-finite condition introduced in
[18] plays a key role in studying and using the torsion functor in the context of local
duality. Next, in Sections 4 and 5, we introduce internal tensor functors and their
left derived functors and internal hom functors and their right derived functors,
and prove enough of the standard results about them to establish local duality and
study regularity. The reason these functors must be redefined in the Z-algebra
setting stems from the fact that, unlike in the Z-graded case, bimodules over Z-
algebras are indexed by pairs of integers. Although these sections contain material
similar to results appearing in [13] and [4], they develop the material in greater
generality in order to accommodate the applications in this paper. In Section 6, we
define and study derived functors of hom and tensor, and then prove local duality.
We follow the approach to this material from [23], making some minor changes for
the Z-algebra setting. Finally, in Section 7, we use local duality to prove Theorem
7.8, our version of [7, Theorem 3.3] mentioned above. We conclude the paper by
describing Z-algebra versions of two notions of regularity studied in [9], and showing
that these conditions are equivalent (Theorem 7.10).

2. I-ALGEBRAS

Let I be a set. In this section, we recall (from [20, Section 2]) the notions
of I-indexed algebras and I-indexed analogues of various ring theoretic concepts.
We recall that an I-indexed algebra A is a pre-additive category whose objects
are indexed by I and denoted {O;}icr, and whose morphisms are denoted A;; :=
Hom(O;, O;). If the category is in fact k-linear, which we assume from now on, then
we say A is an [-indezed k-algebra or, abusing terminology, an I-algebra. We will
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often further abuse terminology and call the ring A = 691 j A;; with multiplication
given by composition an I-algebra. We let e; denote the identity in A;;.

Let A be an I-indexed algebra. A (graded) right A-module is a graded abelian
group M = @, ; M; with multiplication maps M; x A;; — M satisfying the usual
module axioms (see [20] for more details). We let GrA denote the category of graded
right A-modules and we let A — Gr denote the category of graded left A-modules.
We call a graded right A-module free if it is a direct sum of modules of the form
e; A for possibly different ¢ € I, and free and finitely generated is this direct sum
is finite. By (see [20, Section 2]), the category GrA is a Grothendieck category so
has enough injectives, and the objects e; A are projective, so that GrA has enough
projectives.

As for rings, one way to see the symmetry between left and right modules is to
introduce the opposite algebra A°P which is just the opposite category. Specifically,
A°P is the I-algebra with (A°P);; = A;;, and with multiplication of f € (A°P);; and
g € (A%)j defined as f-g:=gf € Ap; = (AP)ix

Throughout this paper, we let K denote the Z-algebra with

k ifi=34
Kij = ]
0 otherwise

and with multiplication induced by that of k.

Definition 2.1. Let A and B be I-algebras. We let Bimod(A — B) denote the
following category: an object of Bimod(A — B) is a set M := @mel M;; where
M;; is an abelian group for all 7, j € I, together with group homomorphisms g :
M;; ®p Bjr — My, and ¥ @ Asj Qi My, — My, for all 4, j,k € I making M an
A-B bimodule. Morphisms of objects in Bimod(A — B) are defined in the obvious
way.

Let A be an [-algebra and let B be an H-algebra. We define an I x H-algebra

A ®y B by
(A ®k B)i,n)y(ir,hry = Aiir @k Bh-
If A is an I-algebra, then the enveloping algebra A°? ®;, A is an I*-algebra.

The next result collects various equivalences between graded module categories.
To state it we introduce one more construction: if A is a Z-algebra, we let A°P be
the Z-algebra defined by setting (AOP)” = A_j _;, with multlphcatlon defined as
follows: if f € (AOP)” and g € (A"p)gk7 welet f-g:=gf€cA__;= (A"P) The
notation A% will be justified in Proposition 2.2. We will also employ the following
notation: if C and D are categories, we write C = D to mean there is an equivalence
of categories C — D.

Proposition 2.2. Let A and B be I-algebras. There are equivalences

(1) Bimod(A — B) = GrA°? ®;, B,

(2) A°P — Gr = GrA,

(3) GrA°P = A — Gr,
Furthermore, if A is a Z-algebra, then A°P is left and right graded Morita equivalent
to Aop.

Proof. The proof is routine but we include part of the proof of the last result. We
define a functor F' : GrA — A°P — Gr as follows: we let F(M); := M_; and if
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a € (Z"?’)ﬂ =A_;_; and m € F(M);, we define a - m := ma € M_; = F(M),.
If f: M — N is a morphism in GrA, we define F(f); = f—;. It is now routine to
check that /" has an inverse functor so is an equivalence. Therefore, the fact that
A and A°P are left graded Morita equivalent follows from part (2). O

We now describe notation we will invoke in the sequel. Let A, B be [-algebras.
For each h € I, there is a natural restriction functor resy : Bimod (A — B) — Gr B
defined by M +— e, M and similarly for left modules. Furthermore, for the proof
of Lemma 2.3 and the statement of Lemma 2.4 below, we will use the following
notation: if M € A — Gr and N € GrB, then we define M ®; N € Bimod(A — B)
by (M (g2 N)” = M,; R Nj.

Lemma 2.3. Let h € I. If J is an injective A — B-bimodule, then Jey is an
injective left A-module and ey J is an injective right B-module.

Proof. There is an exact left adjoint to res,, Aep ®5 —, which sends the B-module
P to the A — B-bimodule defined by Aej, ®; P. The result follows from this. O

There are also the usual restrictions induced by morphisms of I-algebras: We let
4 Res : Bimod(A — B) — Bimod(A — K), Resp : Bimod(A — B) — Bimod(K — B)
and Resy, : Bimod(A — B) — Bimod(K — K) denote the obvious restriction functors.
We call an object M € Bimod(A — B) a B-injective if Resg M is injective, and we
define B-projective similarly.

Lemma 2.4. If M € A — Gr, then the object M ®y, e;B of Bimod(A — B) is a B-
projective for all j € I. Therefore, {Ae;®re;jB}i jer is a set of projective generators
for Bimod(A — B) consisting of B-projectives.

Proof. If we let ;M denote the left K-module with

M, — M; ifj:z'.
0 otherwise,

then there is a canonical K — B-bimodule isomorphism
M Rk ejB — @ZM Rk EjB.
Therefore, to prove the first result, it suffices to show Ke; ®j e;B is a projective
K — B-bimodule. To prove this, suppose N is a K — B-bimodule. Then the map
Homgimod(x—B)(Ke; @k ¢;B, N) — Homg,p(e; B, e;N) = Nyj

with first composite sending f to f(e; ® —) is an isomorphism, establishing the first
result.

To establish the second result, we first show that {Ae; ®j e;B}; jer is a set of
generators for Bimod(A—DB). Let e} denote the identity in B;; to avoid the potential
confusion. Since e;” ® ¢ is the identity in (A°? @k B) (i jyi5) = Aii ®k Bjj, and
since Ae; ®y, € B is sent to (e;” ® €})(A? @, B) under the equivalence functor

Bimod(A — B) — GrA°? ®;, B

from Proposition 2.2, we conclude that {Ae; ® e;-B}iyje 1 is a set of generators for
Bimod(A — B).
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The second part will now follow from the first part if we can show that Ae; ®ye; B
is a projective A — B-bimodule. This follows since the map

Homgimod(a—B)(Ae; @ €;B, N) — Ny

defined by sending f to fi;(e; ® ;) is an isomorphism, as the reader can check. O

3. CONNECTED Z-ALGEBRAS

We begin this section by introducing some terminology. Following [20, Section
2], we say that a Z-algebra A is positively graded if A;; = 0 for all ¢ > j and that
A is negatively graded if A;; = 0 for all 4 < j. For n a nonnegative integer, we let
As,, denote the subobject of A in Bimod(A — A) given by EBJ i>n Aij

The terminology “Ext-finite” in the following definition is due to [18, Section 4].
Definition 3.1. Let A be a positively graded Z-algebra. Then

e A is connected if for all i, A;; is a division ring over k,
e if M is in GrA and A is connected, an exact sequence

CRB R Y E M0
is a minimal free resolution of M if for all ¢ > 1, ime; C F;_1A>;, and
FZ',1 free,
o A is right Ext-finite if A is connected, and for all ¢, e;A/(e;A)>;4+1 has a
minimal free resolution, each of whose terms is free and finitely generated,
o Ais left Ext-finite if A is connected, and for all i, Ae;/(Ae;).,_, has a
minimal free resolution, each of whose terms is a finite direct sum of modules

of the form Ae; for various [, and
e A is FEuat-finite if A is both right Ext-finite and left Ext-finite.

We note that if A is positively graded, then A°P is negatively graded, and Aop
is positively graded. Furthermore, if A is connected, then so is A°P.
For the remainder of the paper, we let €; denote the unit in (A°P);;.

Lemma 3.2. If A is left (right) Exzt-finite, then A°P s right (left) Ext-finite.

Proof. Suppose A is left Ext-finite. Under the equivalence in the last part of Propo-
sition 2.2, elAOP goes to Ae_;, while (elA P)>;41 goes to (Ae_;)<—;—1. Therefore,
Aop is right Ext-finite. The proof of the other assertion is similar. O
Remark 3.3. If A is Ext-finite, it follows that A;; is finite dimensional over both
Aii and AJJ

Lemma 3.4. Suppose A is right Ext-finite. Then for all i € Z and all n > 1,

ei(A/A>y) has a resolution, each of whose terms is free and finitely generated.

Proof. The conclusion is true when n = 1 by definition of right Ext-finiteness.
Suppose the result holds for some n > 1. Since there is a canonical exact sequence
in GrA
0= ei(A>n/Asni1) = ei(A/Asni1) — ei(A/A>n) = 0
the result follows from [22, Lemma 2.2.8], from the fact that
ei(Asn/Aznt1) = Aijitn @4, ivn Citn(A)A1).
and from Remark 3.3. ([
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Suppose A is a Z-algebra. A graded right A-module M is right bounded if M,, = 0
for all n >> 0. We let TorsA denote the full subcategory of GrA consisting of
modules whose elements m have the property that the right A-module generated
by m is right bounded.

Lemma 3.5. If A is a right Ext-finite, connected Z-algebra, then TorsA is a Serre
subcategory of GrA, and there is a torsion functor 7 : GrA — TorsA which sends a
module to its largest torsion submodule.

Proof. If N € TorsA, it is elementary to check that any submodule or quotient
module of N is also in TorsA. Conversely, suppose we have a short-exact sequence

0O->M—-N-—->P—0

with M, P € TorsA. Let n € N;. Then there exists an [ > j minimal such that
n-A;r C M for all I’ > [. We prove the result by induction on I — j. If [ = j, then
n € M so that n is a torsion element.

Now we consider the general case. Since A is right Ext-finite, there are finitely
many generators ai,...,am, of (ejA)>;y1. By the induction hypothesis, na; is
torsion for all <. Thus, if a; € Ajg,, then for sufficiently large p, na;Aq,p, = 0 for
all . Therefore, for sufficiently large p, if € A;,, then n-x = 0. Therefore, n is
torsion. O

3.1. Graded coherence. We now review the basic facts about coherence from [15]
which we will need in the sequel. For the rest of Section 3, we let A denote a con-
nected Z-algebra. We warn the reader that our grading convention and assumptions
on A differ slightly from those appearing in [15].

We say that M € GrA is finitely generated if there is a surjection F' — M where
F is free and finitely generated. We say M is coherent if it is finitely generated and
if for every homomorphism f : ' — M with F free and finitely generated, ker f
is finitely generated. We denote the full subcategory of GrA consisting of coherent
modules by cohA. By [15, Proposition 1.1], cohA is an abelian subcategory of GrA
closed under extensions.

We call A right-coherent if the right modules e; A and e;A/(e;A)> ;41 are coher-
ent. In the case that A is a connected Z-algebra, finitely generated in degree one,
then the condition that the modules e; A are coherent implies that A is coherent.
The definition of left-coherence is similar.

The following is [15, Lemma 1.2].

Lemma 3.6. If A is right coherent, then every M € cohA has a resolution
o F2 5 FL S5 FO 5 M =0

with F' free and finitely generated.

4. INTERNAL TENSOR FUNCTORS AND THEIR LEFT DERIVED FUNCTORS

In this section, we develop the basic properties of the tensor product of bimodules
and their associated left-derived functors.

4.1. Internal tensor. Suppose [ is a set and A, B and C are [-algebras. If M is
a graded A-module and N is an A — B-bimodule, we let

M@ 4N = cok(P M ®a,, Atm @, enN 22 P M, @4, , ealN).

l,m n
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It is right exact in each component being defined by cokernels.
Now, suppose M is an A — B-bimodule and N is a B — C-bimodule. We let
M@®pgN denote the A — C-bimodule defined by
(M@BN)’LJ = (eZM@BN)J

with right-structure that of the right C-module @, (e;M® 5 N) and with left multi-
plication by A defined in the obvious way. It is also right-exact in each component,
as one can check. In the sequel we will use, without comment, the fact that multipli-
cation induces an isomorphism e; B& ;N = ¢; N and an isomorphism M® ,B = M.

Remark 4.1. Let N be a B—C-bimodule such that, for all h € I, Ney, is a projective
left C-module. Then, as usual, the functor —® ;N : Bimod(A—B) — Bimod(A—C)
is exact. A similar assertion holds replacing the first input with the second.

The proof of the following result is elementary.
Lemma 4.2. Let M be an A — B-bimodule and let N be a B — C-bimodule. Then
M®gzpRes N = g Res(M®gN).

For the remainder of Section 4, we assume that A, B and C are connected Z-
algebras. We define Ay as the cokernel of the canonical inclusion A>; — A. We
say M € GrA is left-bounded by d if M; = 0 for i < d. Wesay N € A — Gr is
right-bounded by d if N; =0 for all + > d.

The next result is Nakayama’s Lemma.

Lemma 4.3. Suppose M is left-bounded. Then M® ,Ag = 0 implies that M = 0.
Therefore, if N is left-bounded and f : M — N is a morphism with f® ,A¢ a
surjection, then f is a surjection.

Proof. Suppose M is left-bounded by d and My # 0. By right exactness of M® , —,
we have an exact sequence

M@AAZ:L %M@AA%JM—}M@AA()—)O

Since the image of the left map is contained in degree greater than d, the hypothesis
implies that My = 0, a contradiction. Thus, M = 0.
To prove the second part, we apply —® , Ao to

0—imf—-N—>cokf—0
to obtain an exact sequence
(im f)® 4, A0 = N® 4 Ag — cok f® ,Ag — 0,
and we have (im f)® , Ao = im(f® 4A0) = N® ,Ap by hypothesis so that
cok f® ,Ag = 0.
Since N left-bounded, the first part implies that cok f = 0 as desired. (]

Proposition 4.4. Let M be left-bounded by d. Then there exists a multiset of
integers J and a surjection of the form

b F(=Pe;A) - M
jed
such that kery C FA>q and j € J implies that j > d. It follows that M has a
minimal free resolution.
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Proof. The second result follows from the first since ker ) is left bounded. We now
prove the first result. Let U be a graded k-subspace of M defined as follows: for
j<d,U;=0,Us =My, and for j > 0, we let Ugy; be an Agyj4+; complementary
subspace of (MA>1)a+j. By construction, we have M = U @ MA>;, and there
exists a canonical map, ¢, from a module of the form & jed e;A to M sending
local units in degree j bijectively to a right A;;-basis of U;. By Lemma 4.3, ¢ is a
surjection, and by construction, ker ¢ is contained in F'A>; as desired. O

Now the usual proof, using Lemma 4.3, establishes the following result.

Corollary 4.5. If M 1is left-bounded and pd M = n, then every minimal free
resolution of M has length n.

4.2. Internal Tor. Let M be an A — B-bimodule. As —® ,M : GrA — GrB is
right exact and GrA has enough projectives, the left-derived functors of —® , M
exist and can be computed using projective resolutions. We denote the ith such
Tori(—,M). It follows immediately that Tor{ (F,M) = 0 if i > 0 and F is
projective. In addition, the proof that the bifunctor m;‘(f, —) is balanced follows
the usual proof [22, Theorem 2.7.2]. For the readers convenience, we include the
Z-algebra version of [22, Proposition 4.4.11] below.

Lemma 4.6. Let N be a left-bounded object of GrA, let pd N # 0, and suppose
0—=L—=+F—=N=0

is the start of a minimal free resolution (which exists by Proposition 4.4). Then
(1) Tory, (N, Ag) = Tori (L, Ag) for d > 1, and
(2) pd N <1+pdL.

Proof. The first result follows from the long exact sequence induced by applying
—® 440 to the given short exact sequence.

If---—>F,—--— F — Fy — N — 0 is the continuation of the given short
exact sequence to a minimal free resolution for N, then it can be truncated to a
minimal free resolution

o= F=-=FP=L=0
of L, whence the second result. [l
Proposition 4.7. Suppose N is left-bounded by d. Then pd N < n if and only if

TOTSH(N, Ap) = 0. In particular, N is projective if and only if N has the form
@D,cse;A for some multiset J such that j € J implies j > d.

Proof. The forward direction of the first statement is immediate since Tor?; 1 (N, Ag)
is computable using projective resolutions of N.

Conversely, we first suppose n = 0, i.e. Mf(N, Ap) = 0. If we have the start
of a minimal free resolution

(4-1) 0=+L—+F—=N=0
then, by hypothesis, the induced sequence
0— Lo, Ag = F®,Ag = N® 4 Ag — 0

is exact. Minimality of (4-1) implies L® , Ag = 0, so that, since L is left-bounded,
Lemma 4.3 implies that L = 0. Therefore N has the form P, ;e;A for some
multiset J such that j € J implies 7 > d, so pd N = 0. This establishes the
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backwards direction of the first statement in case n = 0 and, together with the
forward direction of the first statement, proves the second statement.

Finally, we complete the proof of the first statement. Suppose n > 0. The first
part of Lemma 4.6 implies ’Torff (L, Ag) = 0 so that, by induction, pd(L) < n — 1.
Then the second part of Lemma 4.6 implies that pd N < n. (]

The next result follows immediately.
Corollary 4.8. Suppose N is a left-bounded object of GrA. Then
pdN = sup{p|m;‘(N, Ap) # 0}

We note that Ape; is an A— A-bimodule, so Tor;‘(N, Ape;) exists. Furthermore,
since —® 4 Ae; is an exact functor, we have

Tm";‘(]\f7 Ap)e; = ’Tor;l(N, Ape;).
It thus follows from Corollary 4.8 that
pd N = sup{p|T0r£(N, Ape;) # 0 for some j € N}.

If M is a B — A-bimodule, one can also consider the left-derived functors of
M® ,—: A—Gr — B—Gr. The above results (Lemma 4.3, Proposition 4.4, Lemma
4.6, Proposition 4.7 and Corollary 4.8) each have versions for right-bounded graded
left A-modules with virtually identical proofs. In particular, we single out

Proposition 4.9. Suppose M is a right-bounded object of A — Gr. Then
pd M = sup{p|Tor; (Ao, M) # 0}.
Corollary 4.10. Let A be a connected Z-algebra. Then
sup{pde;Ap|i € Z} = sup{pd Age;|j € Z}.
Proof. By Corollary 4.8 and Proposition 4.9,
sup{pde;Apli € Z} = sup{p|Mﬁ(eiAo,Aoej) # 0 for some i,j € N}
= sup{pd Aoe;|j € Z}.

Proposition 4.11. Let A be a connected Z-algebra such that
sup{pd Age;|j € Z} =n < o0
and let N be a left-bounded object of GrA. Then pd N < n.
Proof. By the comment following Corollary 4.8, it suffices to prove that
Tory (N, Age;) =0

for all ¢ € Z and all p > n + 1. Since N is left-bounded, it has a minimal
free resolution by Proposition 4.4. Tensoring this resolution with Ay and tak-
ing homology at the pth term yields MS(N, Ap). Since M]‘;‘(—, —) is balanced,
m;‘ (N, Ape;) = m;‘ (N, Ap)e; can also be computed by tensoring a minimal free
resolution of Age; by N. The result now follows from Corollary 4.5. (]

5. INTERNAL HOM FUNCTORS AND THEIR RIGHT DERIVED FUNCTORS

In Section 5.1 and Section 5.3 we review the definition and basic properties of
the internal Hom functors and their derived functors studied in [13].
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5.1. Internal Hom. We begin by defining the internal Hom functor. Suppose I
is a set and A, B, C and D are I-algebras. For M an object in Bimod(A — B) and
N an object in GrB, we let
Homp(e; M, N)
denote the right A;;-module with underlying set Homg,g(e; M, N) and with A;;-
action induced by the left action of A;; on e; M, and we let
Homp(M,N)
denote the object in GrA with ith component Homp(e; M, N) and with multipli-
cation induced by left-multiplication of A on M.
Next, suppose M is an A — B-bimodule and N is a C' — B-bimodule. We define
a C — A-bimodule Hom (M, N), as follows: we let
r)"[OTTLB(]\47 N)” = HO’ITLB(M, eiN)j,

we endow Hom g (M, N) with right A-module multiplication inherited from that of
Homp(M,e;N) (where we consider e; N to be an object of GrB), and we let the
left C-module multiplication be canonical.

Remark 5.1. We note that Hom g (—, —) is left exact in each variable, and for each
injective J in Bimod(C — B), Homg(—, J) is exact.
The following result is elementary but will be needed later.
Lemma 5.2. Let M be an A — B-bimodule and let N be a C — B-bimodule. Then
there is an equality
Resp(Hompg(M,N)) = Hompg(Resp M, Resg N).
As expected, one has adjointness of internal Hom and tensor:
Proposition 5.3. Let M be an A — B-bimodule, let N be a B — C-bimodule, and
let P be a D — C-bimodule. Then
(1) for eachi,j € I, there is a canonical isomorphism of D;; — A;;-bimodules
natural in all inputs
Yij : Home((e;M)®5N, e P) = Homp(e; M, Hom(N,e;P)),
(2) there is a canonical isomorphism of D — A-bimodules natural in all inputs
U Home(M® 4N, P) — Hom (M, Home (N, P)).

Proof. The first result is straightforward and follows the usual proof in the graded
case. For the second result, let W;; := 1);;. Then the fact that ¥ is natural and a
bimodule map follows from naturality in part (1). |

5.2. The duality functor. In this section, we define the duality functor and de-
scribe its basic properties. Once again, we let I be a set and we let A, B and C
denote I-algebras. If M € Bimod(A — B), then we first observe that the K — A-
bimodule Hom ; (4 Res M, K) has a left B-module structure induced from the right
structure of M, and we let

D : Bimod(A — B) — Bimod(B — A)

denote the functor
D(M) =Hompg (4 Res M, K)
with the left B-module structure defined above. The functor D is exact.
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Furthermore, if M is an object of GrB, we may consider it as an object M of
Bimod(K — B) by defining
M;; = {Mj if i =0,

0 otherwise.

In this case, we let D(M) := D(M). A similar comment applies to M in B — Gr.
We omit the straightforward proof of the next lemma, which relates D to the
usual duality functor.

Lemma 5.4. Consider the functor E : Bimod(A — B) — Bimod(B — A) defined by
letting E(M);; == Homy ((Mj;)k, k) and with bimodule structure induced by that of
M. Then D= E.

Proposition 5.5. Let M be an A — B-bimodule and let N be an B — C-bimodule.
Then there are left C-module structures on Homp(M,Homy (g Res N, K)) and
Homy (xk Res(M®gN), K) such that the K — A-bimodule isomorphism

Homp(M,Homy (pResN,K)) = Homp(M®,pResN, K)
= Hompg(aRes(M@zN), K)

with first composite from Proposition 5.3 and with second composite from Lemma
4.2, is compatible with left C-module multiplication. Therefore there is a natural
isomorphism
Homp(M,D(N)) = D(M&pN).

Proof. We endow Hom (M, Hom (5 Res N, K)) with left C-module structure com-
ing from the left structure on Hom (5 Res N, K) defined above and similarly, we
give Hom (4 Res(M® N ), K) the left module structure as in the definition of the
duality functor.

Next, let ¢;; € Cy;. It suffices to show that the diagram

Homg ((e;M)® 5 Res N, e; K)—Hompg (e; M, Homy (g Res N, e; K))

l l

Hompg ((e;M)® 55 Res N, i K)—Homg (e; M, Hom (g Res N, e, K))

with horizontals from adjointness and with verticals induced by left multiplication
by ¢;;, commutes for all 5 € I. This can be checked explicitly and we omit the
routine computation. O

5.3. Internal Ext. Let I be a set, let A and B denote [-algebras, and let M €
Bimod(A — B). In this section we study the right derived functors of Hom g (M, —)
and Homp(e;M,—) considered as functors from GrB to GrB. The fact that
Homp(M,—) and Homp(e; M, —) have right derived functors follows from Re-
mark 5.1. We denote them by Ext’s (M, —) and Ext'y(e; M, —). We will invoke the
following notation in this section: if R is a ring, we let ModR denote the category
of right R-modules. If S is a ring and F' is an R — S-bimodule, we let F™* denote
the right dual of F. We note that since taking the jth degree part of an object of
GrB is an exact functor from GrB to ModB;;, we have

(Extis (M, N)); = Extig(e; M, N)

for all N in GrB. We further note that the sequence (Extly(M,—));>o forms a
universal o-functor by [5, ITI, Corollary 1.4].
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For the remainder of this section, we specialize to the case that A is a connected
Z-algebra and M is an A — A-bimodule. For the readers convenience, we recall a
result from [13], (Lemma 5.6 below), which will be needed in Section 7. In order to
do this, we introduce some notation. Suppose F'is an A;; — A;;-bimodule of finite
dimension on either side, and let F' ®4,, e;M denote the object of Bimod(A — A)
such that

F®a, My, ifl=7
(F ®a,; eM)im {0 otherwise,
endowed with the obvious bimodule structure. We recall, from [13, Lemma 6.5],
that the proof of the following lemma comes from uniqueness of universal d-functors
as in [5, 11T, Remark 1.2.1].

Lemma 5.6. Suppose F' is an Aj; — Ay-bimodule of finite dimension on either
side, and let F ®4,, e;M denote the object of Bimod(A — A) defined above. Then
there is a natural isomorphism of ModA;;-valued functors

5mtf'4(F ®a,, e;M,—) = Sxtf;l(eiM, —) ®a,, F".
Corollary 5.7. Suppose A is Ext-finite. Then
Ext!y(Asn/Asnir, —); = Ext’y(€jundo, =) @Ay sin A it
Proof. We have isomorphisms
Exty(Asn/Asni1, —); = Extiy(ej(Asn/Asnt1), —)
> Extly (Ajjin @Ay sin €54nA0, —)
= 5mtf4(ej+"A07 =) @45 n1n Afjin
where the last isomorphism is from Lemma 5.6, which applies since A; ;4 is finite

dimensional over A;; and A, j1+n by our assumption of Ext-finiteness and Remark
3.3. O

Given the description of TorsA from Lemma 3.5, the following is elementary to
check.

Lemma 5.8. Suppose A is right Ext-finite. Then there is an isomorphism of
functors 7(—) = lim Hom 4 (A/A>n, —).
n—oo -

Lemma 5.9. Suppose A is right Ext-finite. For i > 0, the functor R' T commutes
with direct limits.

Proof. By Lemma 3.4, e;A/e;(A>,) has a resolution whose terms are free and
finitely generated. By [8, Proposition 8.2, p. 809], Ext'(e;A/e;(Asy,), —) can
be computed as the ith cohomology of Hom(—,—) applied to this resolution.
Therefore, the functor

lim Eat)y (e;A/ej(Azn), —)
commutes with direct limits, as desired. O

Lemma 5.10. Suppose A is right Ext-finite. If T € GrA is a torsion module, then
R'7(T) =0 fori>0.

Proof. By Lemma 5.9, we may assume, without loss of generality, that T is right-
bounded by degree r. The result now follows from [13, Lemma 6.4(3)]. O
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6. LocAL DUALITY

Our goal in this section is to prove a version of local duality for connected right
Ext-finite Z-algebras. As many of the proofs in this section are similar to their Z-
graded counterparts, we will rely heavily on proofs already in the literature, while
carefully describing the differences that arise.

Throughout this section, unless otherwise stated, we let A, B, C and D be Z-
algebras. If C is an abelian category, we let K(C) denote the homotopic category
of C, we let K*(C) (resp. K7(C)) denote the full subcategory of K(C) consisting of
bounded below (resp. bounded above) complexes. We let D(C) denote the derived
category of C, and we let DT (C) (resp. D~ (C)) denote the full subcategory of D(C)
consisting of bounded below (resp. bounded above) complexes. Finally, we let
D®(C) denote the full subcategory of D(C) consisting of bounded complexes.

Suppose M*® is a complex of A — B-bimodules, N°® is a complex of B — C-
bimodules, and P* is a complex of D — C-bimodules. We define Tot(M*® ;N*®) as
in [17, Definition 12.23.3] or, equivalently [23, p. 51] and Homg (N*®, P*) as in [17,
Section 15.67] or, equivalently [23, p. 49]. In light of Proposition 5.3(2), the proof
of the following proposition is completely analogous to the proof of [17, Lemma
15.67.1] and we omit the details.

Proposition 6.1. There is a natural isomorphism of complezes
Hom. (Tot(M*©,N*), P*) = Hom'y(M*, Hom(N*, P*)).
Corollary 6.2. There is a natural isomorphism of complezes of C — A-bimodules
Homs,(M*, D(N*)) = D(Tot(M*®,,N*)).

Proof. Since 4 Res Tot(M*® 5N*®) = Tot(M*® 55 Res N*), it suffices to show that
the adjoint isomorphism from Proposition 6.1

Homp(M®, Homy (pRes N®, K)) = Homj (Tot(M*® ;5 Res N°®), K)

is an isomorphism of complexes of left C-modules. This follows from Proposition
5.5 in light of the explicit form of the isomorphism from Proposition 6.1. O

Next, we work towards definitions of derived functors of internal tensor and hom
functors. The proof of the following is analogous to the proof of [12, Lemma 21]
and is omitted.

Lemma 6.3. The functor
Homp(—,—) : (Bimod(A — B))°? x Bimod(C — B) — Bimod(C — A)
descends to a a bi-d-functor
Homp(—,—) : K(Bimod(A — B))°? x K(Bimod(C — B)) — K(Bimod(C — A)).

We now adapt [23, Theorem 2.2] to our context. To do so, we note the next
result, which follows from Lemma 5.2.

Lemma 6.4. There is an equality
Resi (Hom%(M®,N®)) = Hom%(Resp M®, Resp N°).

As in the proof of [23, Theorem 2.2], we will need the following version of [6, I,
Lemma 6.2].
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Lemma 6.5. Let L denote the full subcategory of K¥(Bimod(C — B)) consisting
of complezes which are isomorphic, in K¥(Bimod(C — B)), to complexes of B-
injectives. Suppose M*® is in K(Bimod(A — B)) and N® € L. If either M*® or N*® is
acyclic, then Homp(M*®, N*®) is acyclic.
Proof. By Lemma 6.4, it suffices to show that, under the hypotheses,

Hom$% (Resp M®,Resp N*®)

is acyclic. This is a complex of bigraded bimodules, which is acyclic if and only if
it is acyclic in each bidegree. Therefore, the result follows from Lemma 2.3 and [6,
I, Lemma 6.2]. O

Our adaptation of [23, Theorem 2.2] follows.

Proposition 6.6. (1) The functor Hom%(—,—) from Lemma 6.3 has a de-
rived functor

RHom%(—,—) : D(Bimod(A — B))*” x D*(Bimod(C — B)) — D(Bimod(C — A)).

Furthermore, when N* € D¥(Bimod(C — B)) is a complex of B-injectives,
then
RHomp(M®,N°®) = Homy(M®, N*)
for all M® in D(Bimod(A — B))°P.
(2) The functor Hom%y(—, —) also has a derived functor

RHom%(—,—) : D™ (Bimod(A — B))°? x D(Bimod(C — B)) — D(Bimod(C — A)).
When M*® € D~ (Bimod(A — B))°? is a complex of B-projectives then
RHomp(M®,N°®) = Homp(M®,N*)

for any N* € D(Bimod(C — B)).
(3) The two derived functors coincide on

D~ (Bimod(A — B))°” x D™ (Bimod(C — B)).

Proof. In light of Lemma 2.3 and Lemma 6.5, we may follow the proof of [23,
Theorem 2.2]. O

Lemma 6.7. The functor
—®p— : Bimod(A — B) x Bimod(B — C) — Bimod(A — C)
descends to a bi-6-functor
Tot(—®z—) : K(Bimod(A — B)) x K(Bimod(B — C')) — K(Bimod(A — C)).
Proposition 6.8. The functor
—®p— : Bimod(A — B) x Bimod(B — C) — Bimod(A — C)
has a deried functor
—@I;J,— : D7 (Bimod(A — B)) x D™ (Bimod(B — C)) — D™ (Bimod(A — C)).

If either M*® is a complex of A — B-bimodules which are B-projectives or N® is a
complex of B — C-bimodules which are B°P-projectives, then

M*@5EN® = Tot(M*®,N*).
Proof. The proof is the same as the proof of [23, Theorem 2.5]. (]
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Lemma 6.9. Suppose B is a right Fxt-finite, connected Z-algebra. Then, the
torsion functor extends to a left-exact functor 7 : Bimod(A — B) — Bimod(A — B).

Proof. Let M be an A — B-bimodule. We define
(M) == (P eM)

which, by Lemma 5.9, is isomorphic to @, 7(e;M). If m € 7(e;M); and a € Ay;
then am € 7(e;M). The result follows from this. O

By [22, Theorem 10.5.6], 7 has a right-derived functor
R7: D (Bimod(A — B)) — D(Bimod(A — B)).

Lemma 6.10. Let A be a right Ext-finite, connected Z-algebra. If K® is a complex
whose terms are free right A-modules and N® is a compler of A — A-bimodules,
then there is a canonical isomorphism

Tot(K*® ,7(N*)) = 7(Tot(K*® ,N*)).
Proof. By Lemma 5.9, 7 commutes with direct sums, and the result follows. (I

The following is a Z-algebra version of Z-graded local duality [18, Theorem
5.1(2)].

Theorem 6.11. Let A be a right Ext-finite, connected Z-algebra. Let M be an
object in Bimod(K — A). Then

DR7(M)2RHom,(M,DR7(A))
in D(Bimod(A — K)).

Proof. By Proposition 2.2(1), there exists an injective resolution of A as an A —
A-bimodule, which we denote by E°®. By Lemma 2.4, there exists a projective
resolution K*® of M in Bimod(K — A) whose terms are direct sums of modules of
form Ke; ®ejA. Since each Ke; ® e;A is a free right A-module, we may view K*®
as a graded right A-module resolution of M = @®;e; M whose terms are free. Thus,
by Lemma 6.10, Tot(K°*® ,E*®) is a T-acyclic complex. Furthermore, this complex
is quasi-isomorphic to M® 4, A = M.
By Lemma 6.10, we have

M@ R7(A) = Tot(K*®,7(E"))
7(Tot(K*® ,E*))
R7(M).

1%

1

Thus,
RHom ,(M,DR7(A))

1%

Hom® (K*, DR(4))

=~ D(Tot(K*®, R7(A))
~ D(M&%RT(A))
~ DRT7(M),

where the second map is from Corollary 6.2. (]
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7. AS-REGULARITY AND ASF-REGULARITY
In this section, we assume A is a connected Z-algebra.

Definition 7.1. A is AS-regular of dimension d and of Gorenstein parameter 1 if

(1) pde;Ag =d for all i € Z, and

(2) 5$t?4(6¢A07 ejA) o~ i 114 . anda j 7+
0 otherwise.

As pointed out in [20, Section 4.1], A is a Z-graded AS-regular algebra of di-
mension d and of Gorenstein parameter [ if and only if its associated Z-algebra
D, jez Aj—i is AS-regular of dimension d and of Gorenstein parameter I. More-
over, there exist AS-regular Z-algebras of dimension 3 and Gorenstein paramter 4
which do not arise in this manner [20, Section 5.6]. In [10], we will give a general
method for constructing AS-regular Z-algebras.

Since A is positively graded, A°? is no longer positively graded, but, although
A°P is not isomorphic to A°P, A°P? and A°P have equivalent graded left and right
module categories by Proposition 2.2. This motivates the following definition.

Definition 7.2. We say the negatively graded algebra A° is AS-regular of dimen-
sion d and of Groenstein parameter | if A°P is AS-regular of dimension d and of
Gorenstein parameter [.

Proposition 7.3. Suppose A is an Ext-finite, AS-reqular algebra of dimension d
and of Gorenstein parameter l. If n > 1 and N is in GrA, then Eat'y (A/A>,, N) =
0 fori>d and Ext’y(A/A>p,emA) =0 fori #d.

Proof. We prove the result by induction on n. When n = 1, the first result follows
from the fact that the jth component of MZ(A/AE, N) may be computed from
a length d projective resolution of the jth component of A/A>;, while the second
result follows directly from regularity.

For the general case, we note that the exact sequence

0— AZn/AZTH-l — A/A2n+1 — A/Azn — 0
in Bimod(A — A) induces a long exact sequence, of which
Eaty (A)Asn, N) = Exty (A)Asni1, N) = Ext'y(Asn/Aspi1, N)

is a part. If i > d the left term is zero by induction while the right term is zero by
Corollary 5.7 (which applies by Remark 3.3) and regularity. Therefore, the center
is zero in this case. If i < d and N = e, A, the same reasoning ensures that the
center is zero. (]

The proof of the next result, Corollary 7.4, generalizes that of [13, Corollary 7.3],
which was used to prove Serre vanishing for noncommutative projective lines. In
this paper, we use Corollary 7.4 to prove Corollary 7.6, which, in turn, is utilized
in the proof of the main result in [10]. In the proof of Corollary 7.4, we will use the
following terminology. Suppose A\, p € Z with A < p and let N € GrA. We write
N C [\, p] if N; nonzero implies that A <i < p. We say N is concentrated in degree
m if N C [m, m].

Corollary 7.4. Suppose A is an Ext-finite AS-regular algebra of dimension d and
Gorenstein parameter 1, and let N be an object of GrA.
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(1) Fori>d,
R'7(N) = 0.
(2) Fori#d and all j,
R'r(e;A) = 0.
(3) Foralli,j,
(R (ejA))j1—i = Al i
as right Aj_j_; j_i—;-modules.

Proof. By Lemma 5.8 and the fact that GrA has exact direct limits, the first two
results follow directly from Proposition 7.3.
To prove (3), we prove three preliminary claims. We first claim that

Exth(A)Asni1,e;4) C[f—1—n,j—1].
To this end, we note that, by Proposition 7.3, the sequence
0— AZn/AZn—H — A/A2n+1 — A/Azn — 0

induces an exact sequence
(7-1)

0 = Eath(A/Asn, € A) — E2th(A/As i1, ;) — Eth(Asn[As i, €5 4) = 0.
If n = 0, then the claim follows from AS-regularity. By Corollary 5.7 and AS-
regularity, the third term in (7-1) is concentrated in degree 7 — I —n, so the general
case follows from the induction hypotheses and (7-1).

By (7-1), there is an injection

Exth(A/Asi1,¢j4) » lim Exth(A/As ¢ ).
We next claim that this injection is surjective in degree 5 — [ —i. To prove this

claim, we note that if n < ¢, @i(A/AZnH, ejA)j_i—; = 0 by the first claim. On
the other hand, if n > 4, the canonical map

(7-2) Exth(A)Asivr, e5A) -1 = ExtG(A/Aspi1,e54)5 1

is an isomorphism, as follows. As in the proof of the first claim, the third term in
(7-1) is concentrated in degree j — I — n, so that

(7-3) Exth(A)Asn,ejA) > 1—nt1 — Exth(A)Asnir,€5A) 55 1—nt1

is an isomorphism. Therefore, the maps

(7-4) Ext(AfAsipr,ejA);1i — Ext(A)Asiva,€5A) 1 i —
s Eat (A Aspprse5A) 1

are isomorphisms for every n > i and the second claim follows.
We finally claim that m‘i(A/AZnH,ejA)j,l,n &~ A;f_l_n,j_l. To prove this,
we note that when n = 0, the claim follows from AS-regularity of A. For n > 0,

Exth(A/Aspir,e5A)j i =2 Exth(Asn/Asnir,eA)j 1 n

1%

%
j—l—mn,j—1

where the first isomorphism follows from the first claim and (7-1), while the second
isomorphism follows from Corollary 5.7 and AS-regularity.
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Next, we prove (3). We have
(R7(e;A))j—1—i = 1i_>m Exth(A/Asp, 5 A) i1
Exth(A/Asiv1,ejA)j 1

1%

o~

*
J=l—ij—=D

where the first isomorphism is from Lemma 5.8, the second isomorphism follows
from the second claim, and the third isomorphism follows from the third claim. [

Definition 7.5. A connected Z-algebra A is called ASF-reqular of dimension d and

of Gorenstein parameter [ if for all j € Z,
(1) sup{pde;jAplj € Z} = d < o0, and

D(Ae;_;)if¢g=d

2) RY A) =
2) T(ej ) 0 otherwise

as graded right A-modules.

As above, we say that A°P is ASF-regular of dimension d and of Gorenstein
parameter [ if A°P is.

Corollary 7.6. Let A be an Ext-finite AS-regular algebra of dimension d and
Gorenstein parameter | such that A;; = k for all i. Then, for every j € Z, there is
an isomorphism of graded right A-modules

D(Ae;_;) ifg=4d
0 otherwise.

Rit(e;A) = {

Proof. In light of Lemma 5.4, the isomorphism is, componentwise, just that in
Corollary 7.4. It thus remains to check that the isomorphism is compatible with
right multiplication. To this end, we let ¢ < m be nonnegative integers and we let
a € Aj_1_m j—1—;- We must show the diagram

lim Exth (A/Asp,ejA)j s — A%

n— oo J—l—i,j—1

I I

lim Ext® (A/Asp, e A)j_1—m—r A

n—o00 J—l=m,j—1

with verticals induced by left multiplication by a and horizontals from Corollary
7.4, commutes. From the second claim in the proof of Corollary 7.4, it thus suffices
to show

Exth(A)Asiyr,eA) 1 — A

J=l=i,5-1

I I

M%(A/AZWJH? ejA)j*l*m—>A;—l—m,j—l

with maps as in the first diagram, commutes. By the proof of the third claim in
the proof of Corollary 7.4, it suffices to show the induced diagram

Exth(Asif/Asivr,ejA)j1mi — ATy

I I

Mi(Azm/AzmH, ejA)j—l—m—)A;flfm,jfl
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commutes. Using the proof of Corollary 5.7, it suffices to show that the diagram

Ext(Aj1iji®ej iAo, ejA) — AT,

I I

Eaty (Ajim 1 ® ej_1Ao, e A)—A5 1 oy

with verticals induced by multiplication by a and with horizontal maps from Lemma
5.6, commutes. Finally, this commutes by Corollary 5.7 and the universal property
of universal §-functors since, by the remark preceding Lemma 5.6, the functors

mj(Ajflfm’jfl & 6]‘7114.0, _)7
mi(Aj_l—iJ—l & ej—lA()a 7)a
Extt(ej_1 Ao, —) ® A}

j—l—m,j—01>

d *
Eaty(ej—1Ao, =) @ Aj 1 5
are components of universal d-functors. O

Corollary 7.7. If A is Ext-finite, A;; = k for all i, and A is AS-regular of dimen-

sion d and of Gorenstein parameter l, then A is ASF-reqular of dimension d and
of Gorenstein parameter [.

Proof. The first condition for ASF-regularity is immediate while the second condi-
tion for ASF-regularity holds by Corollary 7.6. d

We do not know of an example of an ASF-regular Z-algebra which is not AS-
regular. In fact, we will show that these concepts are equivalent assuming the
existence of a balanced dualizing complex (Theorem 7.10).

For the remainder of this section, 7 : GrA°P — GrA°P denotes the torsion functor.
The following theorem is our version of [7, Theorem 3.3] (see Remark 7.9).

Theorem 7.8. Suppose A is a connected, coherent Z-algebra. Suppose, further,
that both A and A°P are ASF-reqular of dimension d and of Gorenstein parameter
l. Then

R#Hom ,(—, DR7(A)) : D’(cohA) ¢+ D¥(cohA%) : R Hom 1, (—, DR7(AP))

is a duality.

Proof. We first note that since A is connected and coherent, A is right and left
Ext-finite by Lemma 3.6. By Theorem 6.11, R Hom 5, (D R7(e;A), DR T(AP)) is
isomorphic to

R Hom 5 (R Hom 4(e; A, DRT(A)), DR7(AP)).
On the other hand, by Remark 3.3, ASF-regularity, and Theorem 6.11,
RHom o (DR7(e;A), DRF(AP)) = RHom g (Ae;i[d], DRF(AP))

>~ RHom g (6-i11A%[d], DRF(AP))
> RHom g5 (6—i+1A%, DR7(A%))[~d]
~ DRF(6_i1A%P)][—d]

Aori_,

e; A

I
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in D®(cohA) for every i € Z. Since every object in D’(cohA) has a finite length,
finitely generated free resolution by Lemma 3.6, Proposition 4.11, and Corollary
4.5, the result follows. O

Remark 7.9. By Corollary 7.7, the conclusion of Theorem 7.8 holds if A;; = k for
all 4 and the ASF-regularity hypothesis is replaced by AS-regularity.

Theorem 7.10. Suppose A is an Ext-finite connected Z-algebra such that Ay; =k
for alli, and such that R7(A) =2 R7(A°P) in D(Bimod(A— A)). Then the following
are equivalent:

(1) A is AS-regular of dimension d and of Gorenstein parameter l.
(2) A°P is AS-regular of dimension d and of Gorenstein parameter (.
(3) A is ASF-regular of dimension d and of Gorenstein parameter [.
(4) A°P is ASF-regular of dimension d and of Gorenstein parameter .

Proof. The fact that (1) implies (3) (and (2) implies (4)) is Corollary 7.7. We now
prove (3) implies (2). We note that since A is right Ext-finite, the proof of Lemma
6.9 implies that if M is an A — A-bimodule, then e; R7(M) = R7(e; M) for all
i € Z. Therefore, by ASF-regularity,

(DR7(AP))e; = é_;(DRT(A%P))
> Dej R 7(A%P))
= D(e;R7(A))
~ D(R7(ejA))
= Aej_[d]

in D(A — Gr), where we have implicitly used Proposition 2.2 in the first two iso-
morphisms. This implies that é;(D R%(;@?’)) & éjH/T"?’[d] in D(Gr;ﬂ’;).

Since A is left Ext-finite, Aop is right Ext-finite by Lemma 3.2, so that Theorem
6.11 implies (in the third isomorphism below) that

RHom 1 (8,(A%)g,8,AP) = RHom g (8:(A%),&_1(D RF(A%P))[~d])
> ¢, RHom 5z (6:(AP)o, (DRF(AP)))[d]
> ¢, DRF(&(AP))[—d]

¢j-1(D&;(A%)g)[~d]

k[-d ifj=i+1
0 otherwise.

1

By Corollary 4.10, pd ei(m)o < d, while by the calculation above, pd ei(ﬁ)o >d.
This establishes that (3) implies (2), as well as the fact that (4) implies (1). O
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